ALGEBRAIC NUMBER THEORY- SHEET 8

CHRISTOPHER BIRKBECK

Solutions to 8.3 and 8.4 should be handed in to me via Moodle by 11:59PM on 28/03/2021.

- **Exercise 8.1.** (1) Let $K = \mathbb{Q}(\sqrt{-13})$. Compute the class group Cl_K and give the multiplication table.
 - (2) Find all integer solutions to the Diophantine equation $x^3 = y^2 + 13$, justifying your answers carefully.
- **Exercise 8.2.** (1) Let $K = \mathbb{Q}(\sqrt{-17})$. Compute the class group Cl_K and give the multiplication table.
 - (2) Find all integer solutions to the Diophantine equation $x^3 = y^2 + 17$, justifying your answers carefully.
- **Exercise 8.3.** (1) Let $K = \mathbb{Q}(\sqrt{-79})$. Compute the class group Cl_K and give the multiplication table.
 - (2) Find all integer solutions to the Diophantine equation $x^3 = y^2 y + 20$, justifying your answers carefully.

Exercise 8.4. Let ζ_7 be a 7-th root of unity and $K=\mathbb{Q}(\zeta_7)$. Complete the following table describing the decomposition of ideals (p) (with p a prime number) in \mathcal{O}_K as done in Example 3.6.16 of the notes. In the table, we let $n=p^km$ where $p\nmid m$.

$p \mod 7$	Order of $p \mod m$	Factorization of (p)	Norms
0			
1			
2			
3			
4			
5			
6			

Exercise 8.5. Please procrastinate by going to moodle and doing the student evaluation questionnaire.