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Chapter 1

Number Fields

These notes have been heavily influenced by notes from several sources including:
Richard Hill, David Loeffler, Keith Conrad, [Mar18Mar18],[Sam70Sam70] and others.

1.1 Recap on rings and fields

We begin by recalling some basic facts in commutative algebra. Specifically, some
ring theory and field theory.

Remark. Throughout, we will not differentiate between ⊂ and ⊆. If such a
distinction needs to be made we will state it or use $.

Definition 1.1.1. A ring R is a set with two binary operations called addition ′+′

and multiplication ′·′, such that:

1. R is an abelian group with respect to +. Note this means R contains a
zero element denoted 0 and every r ∈ R has an additive inverse −r ∈ R.

2. Multiplication is associative and distributive, i.e,

(xy)z = x(yz) x(y + z) = xy + xz (y + z)x = yx+ zx

A ring is called commutative if xy = yx and contains an identity element,
denoted 1. Having a 1 is sometimes called being unital. Lastly, the subset of
elements of R which have a multiplicative inverse are denoted R×.

Notation 1.1.2. Throughout this whole course, our rings will be assumed to be
unital (i.e. have a 1) and unless otherwise stated, will be commutative.

Definition 1.1.3. We say a ring R is an integral domain, if whenever xy = 0 then
either x = 0 or y = 0, for x, y ∈ R.
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Definition 1.1.4. Let R,S be rings, then a ring homomorphism φ : R→ S is a
map such that

φ(x+ y) = φ(x) + φ(y) φ(xy) = φ(x)φ(y) φ(1) = 1, φ(0) = 0

A ring homomorphism is called an isomorphism if it is bijective.

Example 1.1.5. The map φ : Z → Z/pZ defined by x 7→ x mod p is a ring
homomorphism.

Definition 1.1.6. Let φ : R → S be a ring homomorphism. The kernel of φ is
the set of all elements r ∈ R such that φ(r) = 0, this is denoted ker(φ). The
image of φ is the set {φ(r) : r ∈ R}, this is denoted Im(φ)

Example 1.1.7. 1. The set of integers Z is a commutative ring.

2. The set Z[x] of polynomials with integer coefficients is a ring. In general,
if R is a ring, then R[x] is also a ring.

Definition 1.1.8. A field F is a commutative ring in which every non-zero element
has an inverse. Equivalently, the set F× := F\{0}.aa

Example 1.1.9. 1. The rational numbers, Q, are a field. As well as the Reals
R and the complex numbers C.

2. If p is a prime number, then Fp := Z/pZ (the field of integers modulo p) is
a field.

Non-example 1.1.10. The following are not fields: The integers Z, the polynomial
ring Z[x].

Definition 1.1.11. Let R be a ring, then an ideal a is a subset of R which is an
additive subgroup of R and such that for any r ∈ R, a ∈ a we have ra ∈ a.

Example 1.1.12. Let R be a ring and r ∈ R, then we let

(r) = {rx : x ∈ R}.

This is an ideal in R and we call it the principal ideal generated by r. Similarly, if
we take r1, . . . , rn then we can from the ideal (r1, . . . , rn) := {

∑
i rixi : xi ∈ R}.

Note that (0) = 0 and (1) = R.

Definition 1.1.13. If for every ideal a in an integral domain R we can find a ∈ R
such that a = (a) then we call R an Principal ideal domain, or PID for short.

Definition 1.1.14. Let R be an integral domain. We say an element r ∈ R is
irreducible if whenever r = ab we must have exactly one of a, b being a unit.

aThe symbol “ := ” means, "defined as".
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Definition 1.1.15. An integral domain in which every element can be written
uniquely as a product of irreducible elements is called a unique factorization
domain, or UFD for short.

Definition 1.1.16. Let R be a ring and let a be an ideal, then the quotient ring
R/a is the ring whose elements are of the form r + a for r ∈ R, with addition
and multiplication given by

(r1 + a) + (r2 + a) = r1 + r2 + a (r1 + a)(r2 + a) = r1r2 + a.

Exercise 1.1.17. Check that this ring structure is well-defined.

Proposition 1.1.18. 1. The kernel of a ring homomorphism is an ideal.

2. The image of a ring homomorphism is a subring.

3. If φ is a ring homomorphism, then there is a ring isomorphism

R/ ker(φ) ∼= Im(φ).

Exercise 1.1.19. Prove Proposition 1.1.181.1.18.

Definition 1.1.20. Let R be a ring and p,m an ideals with neither equal to (1).

1. The p is called prime if whenever xy ∈ p we have x ∈ p or y ∈ p.

2. The ideal m is called maximal if there does not exist an ideal a 6= (1) such
that m is properly contained in a.

Example 1.1.21. Let p be a prime number, then (p) ⊂ Z is both a prime ideal as
well as maximal.

Proposition 1.1.22. 1. Every maximal ideal is prime.

2. Let R be a ring. Then p is a prime ideal if and only if R/p is an integral
domain. Similarly m is a maximal ideal if and only if R/m is a field.

3. The only prime ideal in a field is (0).bb

4. If φ is a non-zero ring homomorphism, then ker(φ) is a proper ideal.

5. Every proper ideal (meaning one which isnt the whole ring) is contained in a
maximal ideal.

Definition 1.1.23. Let a, b be ideals in a ring R. Then we let

1. ab be the ideal generated by the product of elements of a and b.

2. Similarly, a + b denotes the ideal generated by sums of elements in a, b.

3. If a + b = R = (1) we say a, b are coprime.

4. If a, b are ideals we write a | b if there exists an ideal c such that b = ac.
bWhen working with prime ideals later in the course, we will usually ignore the zero ideal.
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1.2 Irreducible polynomials

How do we define more exotic fields? Well a good way is to take quotients of
polynomial rings.

Definition 1.2.1. Let R be an integral domain. A non-zero polynomial p(x) of
degree at least 1 in R[x] is said to be irreducible if whenever p(x) = f(x)g(x)
with f(x), g(x) ∈ R[x] then one of f(x) or g(x) is in R. Note this is slightly
different to Definition 1.1.141.1.14.

Example 1.2.2. The polynomial x2 + 1 is irreducible in Z[x].

Non-example 1.2.3. The polynomial x2 − 1 is not irreducible in Z[x] since it is
(x− 1)(x+ 1) and neither is a unit.

Exercise 1.2.4. Let F be a field. Check that the only units in F [x] are given by
polynomials of degree 0, i.e., they are elements of F .

Exercise 1.2.5. True or False: If p(x) is reducible in F [x] then there exists α ∈ F
such that f(α) = 0 (i.e it has a root in F ).

Now, here is a proposition whose content you should’ve seen in a previous
course covering ring theory or commutative algebra

Proposition 1.2.6. Let F be a field.

1. F [x] is a Euclidean domain and thus a Principal Ideal Domain (PID).

2. In a PID, the ideal generated by a irreducible element is prime.

3. Every non-zero prime ideal in a PID is maximal.

4. Every PID is a UFD.

Remark 1.2.7. Let me just remind you why F [x] is a Euclidean domain. This
is because if you have two polynomials f(x), g(x) then we can do polynomial
long division to write, f(x) = q(x)g(x) + r(x) where deg(g) ≤ deg(f) and
deg(r) < deg(g) (this last bit having a strict inequality is what is important).

Ok great, so if we want to create fields then we just need to find some
irreducible polynomials and then just need to quotient out by it. In other words:

Proposition 1.2.8. Let F be a field, and p(x) an irreducible polynomial in F [x].
Then

F [x]/(p(x))

is a field.

Remark 1.2.9. (In case you’ve forgotten.) What does this field look like? well
its elements can be thought of as f(x) + a(x)p(x) where f(x), a(x) ∈ F [x].
Here p(x) is the zero of this field, so f(x) and f + a(x)p(x) represent the same
element in this field for any a(x).
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Ok, so how do we check if a polynomial is irreducible? Let look at the case
we will most care about, which is Q[x]. Now, we have the following Lemmas
which you may have seen in the Galois theory course or algebra course, so we
wont prove them:

Lemma 1.2.10 (Gauss’s Lemma). A polynomial is irreducible in Z[x] if and only if
it is irreducible in Q[x].

Here is a slightly different version for monic polynomials

Lemma 1.2.11 (Monic Gauss Lemma). Let f ∈ Z[x] be monic and assume that
f = gh with g, h ∈ Q[x] which are also monic. Then g, h ∈ Z[x].

Remark 1.2.12. Convince yourself that both these lemmas deserve to be named
similarly.

This reduces us to checking if a polynomial is irreducible over Z[x].

Proposition 1.2.13. If f(x) is a polynomial in Z[x], let f̄(x) denote its image in
Fp[x]. A polynomial f(x) in Z[x] is irreducible, if we can find some prime number p
such that f(x) and f̄(x) have the same degree and f̄(x) is irreducible in Fp[x].

Proof. This is the same as proving that, if f(x) is reducible in Z[x] then it is also
reducible in Fp[x], which is obvious.

Lastly, we have:

Proposition 1.2.14 (Shönemann’s Irreducibility Criterion). Let f(x) ∈ Z[x] be a
monic polynomial of degree n > 0. Assume that there is a prime p and an integer a
such that

f(x) = (x− a)n + pg(x)

for g(x) ∈ Z[x]. If g(a) 6≡ 0 mod p then f(x) is irreducible modulo p2 and in Z[x].

Proof. Assume for contradiction that

f(x) ≡ r(x)s(x) mod p2,

where WLOG r(x), s(x) are monic. Now, if we instead look at this modulo p, we
have (x − a)n ≡ r(x)s(x) mod p and therefore, since we are in Fp[x] which is
a UFD, we must have r(x) ≡ (x− a)i mod p and s(x) ≡ (x− a)j mod p with
i+ j = n and i, j > 0. If we now evaluate at x = a we see that

r(a) ≡ s(a) ≡ 0 mod p

as i, j > 0. But if we now go back to

f(x) ≡ r(x)s(x) mod p2
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we see that setting x = a gives

pg(a) ≡ r(a)s(a) ≡ 0 mod p2,

which contradicts g(a) 6≡ 0 mod p.
Now, since we are irreducible modulo p2 we are also irreducible in Z[x], since

the same argument as in Proposition 1.2.131.2.13 applies.

Corollary 1.2.15 (Eisenstein Criterion). Let

f(x) = anx
n + an−1x

n−1 + · · · , a1x+ a0

be a polynomial in Z[x] (with n ≥ 1) and let p be a prime number. Suppose an is not
divisible by p, an−1, . . . , a0 are all divisible by p and a0 is not divisible by p2. Then
f(x) is irreducible.

Proof. Since an 6≡ 0 mod p, it is invertible. Now let b be any integer such
that b ≡ a−1

n mod p, then bf(x) = xn + pg(x) for some g(x) ∈ Z[x]. Moreover,
g(0) 6≡ 0 mod p since a0 is not divisible by p2. Therefore, we satisfy Shönemann’s
Irreducibility Criterion and therefore bf(x) is irreducible and thus so is f(x).

Example 1.2.16. 1. The polynomial 3x4 + 10x+ 5 is irreducible in Z[x] by
Eisensteins criterion with p = 5.

2. Let p be a prime and let

Φp(x) :=
xp − 1

x− 1
= xp−1 + · · ·+ x+ 1.

Then this is irreducible. Lets prove this:

Note that we cant apply Eisenstein’s criterion right away, but the trick is to
consider

Φp(x+ 1) = xp−1 + pxp−2 + · · ·+
(
p

2

)
x+ p.

Now, by properties of binomial coefficients, we see that all coefficients other
than the leading one are divisible by p and the last coefficient isn’t divisible
by p2, so Eisensteins criterion applies.

Exercise 1.2.17. Prove that f(x) ∈ Z[x] is irreducible if and only if f(x+ a) is
irreducible for any a ∈ Z.

Example 1.2.18. Now we have more examples of fields:

1. Note that x2 − 2 is irreducible in Z[x], so

Q[x]

(x2 − 2)

is a field.
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2. R[x]/(x2 + 1) is also a field as x2 + 1 is irreducible over R. This field is
isomorphic to C, but you need to be careful, its not *equal* to C, only
isomorphic to. We will talk about this more below.

3. Let p(x) = x2 + x+ 1 in F2[x]. Then p(x) is irreducible in F2[x] and thus

F2[x]/(x2 + x+ 1)

is also a field.

Exercise 1.2.19. Check that p(x) = x2 + x+ 1 is irreducible in F2[x].

Lastly, here is a fact about finite fields we will use several times later but we
wont prove.

Proposition 1.2.20. For each integer n and each prime number p, there is a unique
finite field of size pn. We denote it by Fpn . Conversely, every finite field has size pn for
some prime p and n ∈ Z>0.

1.3 Field extensions

Definition 1.3.1 (Field extensions). Let K be a field containing a field F . Then
we call K a field extension of F (and F a subfield of K). This is denoted by
K/F . The degree of a field extension K/F , denoted [K : F ] is the dimension
of K as a vector space over F . A field extension is said to be finite if [K : F ] is
finite, otherwise we say its infinite.

Proposition 1.3.2. Let F be a field and p(x) be an irreducible polynomial in F [x]
of degree n. Then K := F [x]/(p(x)) is a field extension of F and [K : F ] = n.

Proof. I claim that the image of 1, x, x2, . . . , xn−1 in K form a basis for K/F . To
prove this, first note that, if f(x) ∈ F [x] has degree less than n then its written in
terms of this basis, so when we look at the image in K the same is true. So now
assume that deg(f(x)) ≥ n them we can do polynomial long division to write

f(x) = q(x)p(x) + r(x)

with deg(r(x)) < n. So f(x) ≡ r(x) mod (p(x)). So again we see that in K,
f(x) can be written in terms of this basis, so this basis spans K .

So we just need to prove that this basis is linearly independent. Let x̄i denote
the image of xi in K . Then assume for contradiction, that 1, x̄, . . . , x̄n−1 is not
linearly independent. Then we can find ai ∈ F (not all zero) such that

a0 + a1x̄+ · · ·+ an−1x̄
n−1 = 0

this means
a0 + a1x+ · · · ,+an−1x

n−1 ≡ 0 mod (p(x))
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which means that p(x) divides a0 + a1x+ · · · ,+an−1x
n−1 but this is impossible

as p(x) has degree n and deg(a0 + a1x+ · · · ,+an−1x
n−1) < n.

Definition 1.3.3. Let K/F be a field extension and let α1, . . . , αn ∈ K . Let
F (α1, . . . , αn) denote the smallest subfield of K containing F and α1, . . . , αn.
We call it the field generated by α1, . . . , αn.

A field generated by a single element is called a simple extension. In other
words, F (α) is a simple extension of F . We call α ∈ K the primitive element for
the extension.

Now, here is an important result:

Theorem 1.3.4. Let F be a field and p(x) an irreducible polynomial in F [x].
Moreover, let K/F be a field extension containing a root α of p(x). Then there is an
isomorphism

F [x]/(p(x)) ∼= F (α)

given by sending f(x) to f(α).cc

Proof. Let me denote by φ′ the map F [x]→ F (α) sending f(x) to f(α). First
note that p(x) is in the kernel of φ′, since p(α) = 0 as α is taken to be a root of
p(x). Therefore, φ also induces a new map F [x]/(p(x))→ F (α) which we call
φ (we say that φ′ "factors through" F [x]/(p(x))). Now we want to show φ is an
isomorphism. First note that φ(x+ (p(x))) = α and if a ∈ F then φ(a) = a, so
the image of φ has F and α in its image. Moreover, φ is a field homomorphism,
so the image is again a field. This means that F (α) is in the image of φ (since by
Definition 1.3.31.3.3, F (α) is defined to be the smallest such field). So we just need to
check this map is injective.

Injectivity is easy, since if you recall, the kernel of any non-zero ring homo-
morphism to an integral domain is a prime ideal, and the only prime ideal in a
field is the zero ideal. So since F [x]/(p(x)) is a field and our map is not the zero
map, it must have kernel being the other prime ideal, which is (0) and thus is
injective.

Ok, so why is this so important. Well lets consider the first example in
Example 1.2.181.2.18. Here we took Q[x]/(x2 − 2), now the above result tells us that
this field is isomorphic to Q(

√
2) which you may remember as the field whose

elements look like a + b
√

2 with a, b ∈ Q. But note that the theorem above
doesn’t say anything about which root of x2 − 2 one should take. So we equally
have

Q(
√

2) ∼=
Q[x]

(x2 − 2)
∼= Q(−

√
2).

Remark 1.3.5. One slightly more philosophical observation, is that even to define
F (α) in Definition 1.3.31.3.3 we needed to assume the existence of a fieldK containing

cIn other words, you evaluate a polynomial at α

9



a root of my polynomial p(x), so by definition F (α) depends on K . So just for
the moment let me highlight this dependence on K by writing F (α) as FK(α).

Lets look at the example above. Here we have to assume that there is some
field which contains

√
2. But how do we choose such a K? for example we could

have K being K1 := Q(
√

2,
√

3) or K2 := Q(21/4) or C or something else. In
each case we get our own version Q(

√
2) which we are for the moment denoting

as QK1
(
√

2),QK2
(
√

2) and QC(
√

2). Now, one can ask, are all these versions the
same? well in each case they are isomorphic to Q[x]/(x2 − 2) but to construct
the isomorphisms we had to make choices, particularly we had to pick a root. So
all the versions are in fact isomorphic, but they aren’t "equal", since to be equal
we would require the existence of a canonical isomorphisms between them, i.e.
choice free isomorphisms.

What’s the point of all this? what I want to highlight is how defining Q(
√

2)
requires some choices, but defining Q[x]/(x2 − 2) is choice free. In practice
what we will do is just find some K in Definition 1.3.31.3.3 which works in all cases.
Meaning, we fix a K which contains the roots of all polynomials in F [x]. When
F = Q, then we will just take K = C.

1.3.6 Algebraic extensions

Definition 1.3.7. Let K/F be a field extension and let α ∈ K . Then we say α is
algebraic over F if there exists a polynomial f(x) ∈ F [x] such that f(α) = 0.
Otherwise we say α is transcendental.

Example 1.3.8. 1.
√

2 is algebraic over Q.

2.
√
−1 is algebraic over R.

Exercise 1.3.9. Prove that if α ∈ K is algebraic over F , then it is also algebraic
over any field extension of F .

Proposition 1.3.10. Let α be algebraic over F . Then there is a unique monic
irreducible polynomial mα,F (x) in F [x] which has α as a root. Moreover, mα,F (x)
divides any other polynomial in F [x] with α as a root. This polynomial is called the
minimal polynomial of α over F .

Proof. Lets take mα,F (x) to be a polynomial of minimal degree having α as a
root. Moreover, since we are working over a field, we can multiply by some
element in F to make sure its monic. This is our candidate for the minimal
polynomial. We need to show its unique and irreducible.

If mα,F (x) were reducible, then we would have

mα,F (x) = f(x)g(x),

so f(α)g(α) = 0. Therefore, since we are in a field, this means either f(α) = 0
or g(α) = 0. But mα,F (x) has minimal degree, so one of f or g must have degree
0 (i.e. a constant.) thus mα,F (x) is irreducible.
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So we just need to check its unique. Note that if f(x) is any polynomial with
α as a root, then by polynomial long division we have

f(x) = q(x)mα,F (x) + r(x)

with deg(r(x)) < deg(mα,F (x)). But then evaluating this at α we would have
r(α) = 0, but which can’t happen as it has smaller degree than mα,F (x),
so r(x) = 0. Therefore, mα,F (x) divides any polynomial with α as a root.
From this it follows that if we had two minimal polynomials m1(x),m2(x) then
m1(x)|m2(x) and m2(x)|m1(x) so m1(x) = am2(x) for some a ∈ F , but now
being monic comes to the rescue to say that a = 1, giving uniqueness and
finishing the proof.

Exercise 1.3.11. Let L/F be a field extension and let α be algebraic over F , then
prove that mα,L(x) divides mα,F (x) in L[x].

Now, from Theorem 1.3.41.3.4, Proposition 1.3.21.3.2 and Proposition 1.3.101.3.10 we have
the following:

Corollary 1.3.12. Let K/F be a field extension and α ∈ K algebraic over F . Then

F [x]/(mα,F (x)) ∼= F (α)

and moreover [F (α) : F ] = deg(mα,F (x)).

Definition 1.3.13. Let K/F be a field extension. Then we say K is algebraic
over F if every element of K is algebraic over F .

Example 1.3.14. 1. Q(
√

2) is algebraic over Q.

2. C is algebraic over R.

Proposition 1.3.15. Let K/F be a field extension. Then α ∈ K is algebriac over F
if and only if there is a finite extension of F (inside K) containing α.

Proof. If α is algebraic over F , then we know that F (α) is a field isomorphic to
F [x]/(mα,K(x)). Moreover, [F (α) : F ] = deg(mα,F (x)) by Corollary 1.3.121.3.12 and
by definition of F (α) is is the the smallest such field, so F (α) is contained in K .

Conversely, if α is in a finite extension L/F of degree n. Then consider
1, α, α2, . . . , αn. These n + 1 elements must be linearly dependent over F , so
there exist bi such that

b0 + b1α+ · · ·+ bnα
n = 0

which proves that α is algebraic over F since its a root of b0+b1x+· · ·+bnxn.

Corollary 1.3.16. If K/F is a finite extension, then is it algebraic.
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Exercise 1.3.17. Is the converse of this statement true? In other words, if K/F is
an algebraic extension, then does it have to be finite?

Definition 1.3.18. We say a field extension K/F is finitely generated, if there are
finitely many elements α1, . . . , αn such that K = F (α1, . . . , αn).

Now, here are a couple of facts you might remember from Galois theory

Proposition 1.3.19 (Tower Law). Let K/F be a field extension, αi be elements of K
which are algebraic over F and let Fi = F (α1, . . . , αi).

1. Fn = Fn−1(αn) and in general Fi = Fi−1(αi).

2. [Fn : F ] = [Fn : Fn−1][Fn−1 : Fn−2] . . . [F1 : F ] (note F0 = F )

Proposition 1.3.191.3.19 and Corollary 1.3.161.3.16 gives us:

Theorem 1.3.20. A field extension K/F is finite if and only if K is generated by a
finite number of algebraic elements over F .

Corollary 1.3.21. Let α, β ∈ K be non-zero and algebraic over F . Then α± β, αβ,
α/β, α−1, β−1,etc are also algebraic over F .

Proof. Note that α, β ∈ F (α, β). But from Proposition 1.3.191.3.19 we have that
[F (α, β) : F ] is finite. So by Corollary 1.3.161.3.16 F (α, β) is algebraic over F ,
meaning all of its elements are algebraic over F , which gives the result.

1.4 Algebraic numbers and number fields

Definition 1.4.1. An algebraic number is a complex number which is algebraic
over Q. Meaning, it is a root of a polynomial f(x) ∈ Q[x].

Notation 1.4.2. If α is an algebraic number, then it has a minimal polynomial
which we denoted by mα,Q in Proposition 1.3.101.3.10. Since from now on we will be
working over Q, we will make the notational convention that mα := mα,Q

Definition 1.4.3. If α is an algebraic number and mα(x) is its minimal polyno-
mial, then the set of roots of mα(x) in C are called the conjugates of α.

Example 1.4.4. 1. 0, 47,
√

2,
√
−1, 3/4, 10

√
5 are all algebraic numbers

2. If d is a square-free integer,
√
d is algebraic and its conjugate root is −

√
d.

3. α =
√

2 +
√

2 is an algebraic number. Lets prove it by finding its minimal
polynomial:

α =

√
2 +
√

2 (1.1)

α2 − 2 =
√

2 (1.2)

(α2 − 2)2 = 2 (1.3)

α4 − 4α2 + 2 = 0 (1.4)
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So we see that α satisfies x4 − 4x2 + 2, which means its algebraic.

Is this the minimal polynomial? well lets check. By Eisensteins Criterion
1.2.151.2.15 with p = 2 we see that this is irreducible. Moreover its monic, so it
must be the minimal polynomial.

Now, what are the conjugate roots of α? If you work backwards through

the computation above you’ll see that ±
√

2±
√

2 are all the roots of mα

and thus are the conjugates of α.

Non-example 1.4.5. π = 3.1415 . . . is NOT an algebraic number (although this
isn’t easy to prove).

Definition 1.4.6. A Number field is a subfield of C of finite degree over Q.

Example 1.4.7. Let d be a square-free integer then Q(
√
d) = {a+b

√
d|a, b ∈ Q}

is a number field of degree 2 over Q.

Note that by Corollary 1.3.161.3.16 we see that every element of a number field is a
algebraic number.

By the Fundamental Theorem of algebra, if we take any polynomial f(x) ∈
Q[x], then it has a root α in C. Therefore Q(α) is a number field. This gives us
a great supply of number fields. Similarly, using Theorem 1.3.201.3.20 we can take any
finite set {α1, . . . , αn} of algebraic numbers and then Q(α1, . . . , αn) will again
be a number field.

Exercise 1.4.8. Let Q denote the set of all algebraic numbers. Prove that Q is
actually a field. Is it a number field? explain your answer.

Exercise 1.4.9. Let α be an algebraic number with minimal polynomial mα(x) =∑
i aix

i. Then using this, write down the minimal of 1/α.

1.5 Embeddings

Definition 1.5.1. Let K be a number field. Then an embedding of K is a
non-zero ring homomorphism σ : K ↪→ C.

Remark 1.5.2. Note that since σ is a ring homomorphism, we must have that
σ(x) = x for all x ∈ Q ⊂ K .

Exercise 1.5.3. Prove that an embedding is injective.

Now, since by definition our number fields are subfields of C, then we have
at least one embedding, which is just the identity embedding (i.e, send x to x),
sometimes called the standard embedding. But there can be others.
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Example 1.5.4. Let K = Q(
√

2) then we have two embeddings:

σ1 : Q(
√

2) ↪→ C sending a+ b
√

2 7→ a+ b
√

2 (1.5)

σ2 : Q(
√

2) ↪→ C sending a+ b
√

2 7→ a+ b(−
√

2) (1.6)

Here σ1 is just the identity embedding. Note that since the embedding has
to keep rational numbers fixed, the a, b above stay the same, what the different
embeddings change is where

√
2 maps to, but

√
2 cant just map to anything, we

will see later that in fact it has to map to a conjugate root.
Lets take this as a given and now consider the embeddings of L = Q(

√
2,
√

3).
This is a degree 4 extension of Q and every element can be written as a+ b

√
2 +

c
√

3 + d
√

6 with a, b, c, d ∈ Q. Now, the embeddings are:

ν1 : a+ b
√

2 + c
√

3 + d
√

6 7−→ a+ b
√

2 + c
√

3 + d
√

6 (1.7)

ν2 : a+ b
√

2 + c
√

3 + d
√

6 7−→ a− b
√

2 + c
√

3− d
√

6 (1.8)

ν3 : a+ b
√

2 + c
√

3 + d
√

6 7−→ a+ b
√

2− c
√

3− d
√

6 (1.9)

ν4 : a+ b
√

2 + c
√

3 + d
√

6 7−→ a− b
√

2− c
√

3 + d
√

6 (1.10)

Notice that since K ⊂ L (just take elements with c = d = 0), then it makes
sense to restrict the embeddings of L to K . If you do this, then we see that ν1, ν3

both give the identity embedding σ1 : K ↪→ C, while ν2, ν4 restrict to σ2.

Definition 1.5.5. Let K/F be a finite extension of number fields and let σ :
F ↪→ C and ν : K ↪→ C be embeddings. Then we say ν extends σ if ν restricted
to F agrees with σ. Symbolically, we say ν|F = σ.

Proposition 1.5.6. Let K/F be an extension of number fields and let σ : K ↪→ C
be an embedding such that σ |F= id where id denotes the identity embedding. Then if
f(x) ∈ F [x] is an irreducible polynomial and α is one of its roots, then σ sends α to
a conjugate of α.

Proof. Let f(x) = a0 +a1x+ · · ·+anx
n. Then since σ fixes F , we see that since

a0 + a1α+ · · ·+ anα
n = 0

it follows that
a0 + a1σ(α) + · · ·+ anσ(α)n = 0

and therefore, σ(α) also is a root of f , which gives the result.

Lemma 1.5.7. (Separability Lemma) Let K be a number field and let f(x) ∈ K[x]
be an irreducible polynomial of degree n ≥ 1. Then f(x) has n distinct roots.

Moreover, if σ : K ↪→ C is any embedding and fσ(x) denotes the polynomial
obtained by applying σ to each coefficient, then fσ also has n distinct roots.
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Proof. By the fundamental theorem of algebra, f(x) has n roots in C, so we only
need to show that there are no repeated roots. For this, consider the derivative
f ′(x) of f(x). f ′ is also in K[x] and is non-zero. If f(x) has a repeated root,
then f and f ′ would share a common factor, call it h. So let g denote the greatest
common divisor of f and f ′. Then deg(g) ≤ n − 1 and divides f , but f is
irreducible, so g must be a constant (i.e. deg(g) = 0), but then as h|g this means
h is also a constant and thus, f, f ′ do not share a common factor.

The same proof works using fσ instead. So the result follows.

Proposition 1.5.8. For every embedding σ : F ↪→ C there are [K : F ] embeddings
of K that extend F .

Proof. We will prove this by induction on [K : F ]. If K = F there is nothing to
prove. So assume K 6= F and let σ be an embedding of F . Now take α ∈ K\F
(i.e. in K but not F , which we can do since we are assuming K 6= F ). Consider
its minimal polynomial over F , denoted mα,F . Now let β be a root of the
polynomial you get from applying σ to mα,F , which is mσ

α,F = mα,Fσ . Here F σ

denotes the image of F under σ, which is a number field isomorphic to F . Now,
mα,Fσ is again irreducible over F σ since under an isomorphism an irreducible
polynomial will stay irreducible.

Now, from Theorem 1.3.41.3.4 we have

F (α) ∼= F [x]/(mα,F ) ∼= F σ[x]/(mσ
α,F ) ∼= F σ[x]/(mβ,Fσ) ∼= F σ(β)

therefore there is an isomorphism σ : F (α) ∼= F σ(β) which sends α to β and
restricts to σ on F . Doing this for each root of mσ

α,F we see that there are
deg(mα,F ) = [F (α) : F ] extensions of σ to F (α). Now, use the inductive
hypothesis.

Definition 1.5.9. We say an embedding is real if its image is R ⊂ C. Otherwise
we say the embedding is complex. Note that if σ is a complex embedding, then
so is its complex conjugate σ (i.e. this is the embedding given by applying σ
and then doing complex conjugation.) We call σ, σ a pair of complex conjugate
embeddings.

Remark 1.5.10. Note that Proposition 1.5.81.5.8 applied to K/Q tells us that if r1

is the number of real embedding and r2 is the number of complex conjugate
embeddings (i.e. there are 2r2 complex embeddings), then

[K : Q] = r1 + 2r2.

Theorem 1.5.11 (Primitive element theorem). Let K/F be a finite extension of
number fields. Then there exists α ∈ K such that K ∼= F (α).

Proof. We prove this by induction on [K : F ]. If K = F there is nothing to prove.
So assume that K 6= F and let α ∈ K\F . Then by our inductive hypothesis we
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have K = F (α, β) for some β. We claim that there are infinitely many c such
that K = F (α+ cβ). To do this we will show that there can only be finitely many
c ∈ F such that K 6= F (α+ cβ). Assume this is the case, then lets think about
how many conjugates α+ cβ has over F . If K = F (α+ cβ) then by Proposition
1.5.81.5.8 there would be [K : F ] conjugates of (α+ cβ), but since we are assuming
we aren’t in this situation there must be fewer conjugates. In particular, we must
have two distinct embeddings η, σ : K ↪→ C which extend F and send (α+ cβ)
to the same element. So

η(α) + cη(β) = σ(α) + cσ(β).

Now, note that σ(β) 6= η(β) since otherwise, η(α) = σ(α) and thus, since
K = F (α, β) we’d have σ = η, which is a contradiction. Therefore

c =
η(α)− σ(α)

σ(β)− η(β)
,

but by Proposition 1.5.61.5.6 there are only finitely many possibilities for η(a), η(β),
σ(α), σ(β).

If you use Galois theory then there is a much quicker proof: Since [K : F ] is
finite, there are only finitely many intermediate fields. Now just pick α ∈ K which
is not contained in any of there intermediate fields, then F (α) is an extension of
F not contained in any proper subfield of K , so K = F (α).

1.6 The standard representation

Definition 1.6.1. Let K be a number field and let α ∈ K . Then we can associate
to α a linear operator

Aα : K −→ K x 7→ αx.

This can be written as a matrix over Q by picking a basis of K over Q. The map
α→ Aα is called the standard representation.

Remark 1.6.2. If we had K/F an extension of number fields then by picking a
basis of K/F we can write Aα as a matrix with coefficients in F .

Example 1.6.3. Let K = Q(
√

5) and let α = 3+2
√

5. We have a basis for K/Q
given by {1,

√
5}. So Aα(1) = 3 + 2

√
5 and

Aα(
√

5) = (3 + 2
√

5)(
√

5) = 10 + 3
√

5

therefore in this basis, we have

Aα =

(
3 10
2 3

)
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Proposition 1.6.4. Let K be a number field and α ∈ K .

The map α→ Aα is injective.

Let α, β ∈ K and λ ∈ Q then

Aαβ = AαAβ Aα+β = Aα +Aβ Aλα = λAα

If Cα is the characteristic polynomial of Aα then Cα(α) = 0.

Proof. For we just need to note that Aα(1) = α, therefore α = β if and only if
Aα = Aβ .

For , this is obvious from the definition of Aα as the multiplication by α
map.

Lastly for note that by Cayley–Hamilton that C(Aα) = 0. Now, from
it follows that for any polynomial f(x) ∈ Q[x] we have f(Aα) = Af(α), so

ACα(α) = Cα(Aα) = 0 but then by we must have Cα(α) = 0.

Definition 1.6.5. For K a number field and α ∈ K, then the characteristic
polynomial of Aα is known as the field polynomial of α. We shall denote it by
Cα, but note that it depends on the field we are working with. In particular, if we
write a basis for K over Q or a basis for K over F (for F some subfield), then
the field polynomial can be different in each case. Therefore, unless otherwise
stated we will assume we mean a basis of K/Q.

Proposition 1.6.6. Let K = Q(α) for some algebraic number α. Then Cα = mα,
in other words, the field polynomial of α agrees with the minimal polynomial.

Proof. Note that Cα will be a monic polynomial of degree [K : Q] and has α as
a root. But this means it is divisible by mα. But the are both monic and have the
same degree, therefore must be equal.

Proposition 1.6.7. Let K be a number field and β ∈ K . Then Aβ is diagonalizable
over C and

Cβ =
∏
i

(x− σi(β)) ∈ C[x]

Here the product is over all embeddings σi of K into C.

Proof. By the Primitive Element Theorem 1.5.111.5.11 we can write K ∼= Q(α). Now,
from Proposition 1.6.61.6.6, we know Cα = mα and by Proposition 1.5.61.5.6 we know
that mα =

∏
i(x − σi(α)), therefore, Cα has n := [K : Q] distinct roots (by

Lemma 1.5.71.5.7), therefore Aα is diagonalisable over C, with eigenvalues being the
conjugates of α. So we can find a matrix P (over C) such that

P−1AαP =

σ1(α)
. . .

σn(α)


17



Now, β ∈ K we can find f(x) ∈ Q[x] such that f(α) = β and therefore

P−1AβP = P−1Af(α)P = P−1f(Aα)P = f(P−1AαP ) =

f(σ1(α))
. . .

f(σn(α))


=

σ1(β)
. . .

σn(β)


And since P−1AβP and Aβ have the same characteristic polynomial, we get

the result.

Corollary 1.6.8. Let K be a number field and β ∈ K , then

Cβ(x) = mβ(x)[K:Q(β)] ∈ Q[x]

Proof. By Proposition 1.6.71.6.7 we know all the roots of Cβ are of the form σi(β).
Now, let vi be the embedding of Q(β). Then from Proposition 1.5.81.5.8 we know
that each vi extends to [K : Q(β)] embeddings of K and by definition each of
these embeddings keeps vi(β) the same. So for each vi(β) there are [K : Q(β)]
embeddings σj such that σj(β) = vi(β). Now, since mβ(x) =

∏
i(x− vi(β)) we

see that

Cβ =

[∏
i

(x− vi(β))

][K:Q(β)]

giving the result.
Note that [K : Q] = [K : Q(β)][Q(β) : Q] so the power is correct, since Cβ

has degree [K : Q] and mβ has degree [Q(β) : Q].

1.7 Norm and Trace

Let K/F be a field extension, we now look at ways of taking an element in K
and obtaining elements in F .

Definition 1.7.1. Let K/Q be a number field and α ∈ K . Then we define the
norm of α by

NK/Q(α) = Det(Aα) ∈ Q

and the trace of α by

TrK/Q(α) = Trace(Aα) ∈ Q.

Here Trace(Aα) is the sum of the diagonal entries of Aα.
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Example 1.7.2. Let K = Q(
√

5) and α = 3 + 2
√

5, then Aα = ( 3 10
2 3 ) and

therefore TrK/Q(α) = 6 and NK/Q(α) = −11.

Proposition 1.7.3. Let K be a number field of degree n over Q and α ∈ K . Then

Cα(x) = xn − TrK/Q(α)xn−1 + · · ·+ (−1)nNK/Q(α).

Proof. This is immediate from the definition of Cα as the characteristic polynomial
of Aα.

Specifically, its a basic result in linear algebra, that says ifM is a n×n matrix
with characteristic polynomial C(X) then

C(X) = Xn − Trace(M)Xn−1 + · · ·+ (−1)n det(M)

where Trace(M) is the sum of the diagonal entries of M .

Exercise 1.7.4. Let K = Q(
√
d) with d square-free. Show that

TrK/Q(a+ b
√
d) = 2a NK/Q(a+ b

√
d) = a2 − db2.

Proposition 1.7.5. Let K be a number field and α, β ∈ K . Then

TrK/Q(α+ β) = TrK/Q(α) + TrK/Q(β) NK/Q(αβ) = NK/Q(α)NK/Q(β).

Proof. By definition we only need to consider the trace of Aα + Aβ and the
determinant of AαAβ . But we know from linear algebra that trace is additive and
determinant is multiplicative, so the result follows.

Proposition 1.7.6. Let K be a number field, α ∈ K and let σi be the embeddings of
K into C. Then

TrK/Q(α) =
∑
i

σi(α) NK/Q(α) =
∏
i

σi(α)

Proof. First recall that the norm and trace of a matrix and invariant under con-
jugation. Therefore, the TrK/Q(α) = Trace(Aα) = Trace(P−1AαP ) similarly
for the norm. Now, by Proposition 1.6.71.6.7 we see that we can find P such that
P−1AαP is diagonal with entries σi(α). From this the result follows.

One of the important properties of the trace function is that it gives us a
Q-bilinear pairing on K , defined as follows:

Definition 1.7.7. Let K be a number field. We have a pairing

〈, 〉 : K ×K → Q

given by
〈α, β〉 = TrK/Q(αβ)
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Proposition 1.7.8. The trace pairing is a Q-bilinear perfect pairing. In other words
if α, β ∈ K and λ ∈ Q then

〈λα, β〉 = 〈α, λβ〉 = λ〈α, β〉

and if α ∈ K is such that 〈α, β〉 = 0 for all β ∈ K , then α = 0.

Proof. The fact that it is bilinear follows at once from the definition of TrK/Q. To
check it is perfect, consider α 6= 0. Then α−1 ∈ K and thus TrK/Q(αα−1) =
TrK/Q(1) = [K : Q] which is non-zero.
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Chapter 2

Algebraic integers

We will now move to studying some very important subrings of number fields,
known as the rings of algebraic integers.

2.1 Rings of integers

Definition 2.1.1. Let K be a field extension of Q (not necessarily finite). An
element α is called an algebraic integer if it is a root of a monic polynomial with
coefficients in Z.

Lemma 2.1.2. If A is a matrix with integer coefficients, then its eigenvalues are
algebraic integers.

Proof. If the matrix is integral, its characteristic polynomial is monic with integer
coefficients, and thus the eigenvalues are algebraic integers.

Example 2.1.3. 1.
√

2 is an algebraic integer as it satisfies x2 − 2.

2. Any integer n ∈ Z is an algebraic integer as they satisfy x− n.

Non-example 2.1.4. π,ε are not algebraic integers or even algebraic numbers.

Exercise 2.1.5. Let K = Q(
√

5), is 1+
√

5
2

an algebraic integer?

Notation 2.1.6. If K is a field extension of Q we denote the set of algebraic
integers in K by OK . We will show later that this is in fact a ring.

Remark 2.1.7. Recall the we defined Q to be the subfield of all algebraic numbers
in C. One can similarly define Z to be the ring (we will see later why this is a
ring) of all algebraic integers. From this, one then gets OK = K ∩ Z for K a
number field.

In general it can be hard to prove something isn’t an algebraic integer, since
you’d have to prove it satisfies no monic polynomial with inter coefficients. But
we have the following result that helps in some cases:
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Proposition 2.1.8. Let α ∈ K be an algebraic number with minimal polynomial
mα. Then α is an algebraic integer if and only if mα has integer coefficients (note
that it will be monic by the definition of minimal polynomial).

Proof. If α is an algebraic integer, then its an algebraic number, so I claim that
mα is monic with integer coefficient. We know α satisfies some some monic
polynomial f(x) with integer coefficients and therefore mα divides f(x). Now
use the monic Gauss lemma 1.2.111.2.11 to get that mα is in Z[x].

Conversely, if mα is has integer coefficients, then α satisfies a monic polyno-
mial with integer coefficients, thus is an algebriac integer.

Corollary 2.1.9. Let K be a number field and α ∈ K . Then α is an algebraic
integer if and only if Cα has integer coefficients.

Proof. This follows from Corollary 1.6.81.6.8 and Proposition 2.1.82.1.8.

Corollary 2.1.10. Let K be a number fields and α ∈ K . Then there exists a
n ∈ Z\{0} such that nα is an algebraic integer.

Proof. Let Aα be the standard representation of α. Then this is a matrix with
rational entries. So if we clear denominators by multiplying with a suitable integer
n we get that nAα = Anα is an matrix with integer entries and therefore nα is
an algebraic integer by Lemma 2.1.22.1.2.

Theorem 2.1.11 (Integers in quadratic fields). Let d be a square free integer and let
K = Q(

√
d) then

OK =

{
Z[
√
d] if d ≡ 2 or 3 (mod 4)

Z[ 1+
√
d

2
] if d ≡ 1 (mod 4)

Proof. Let α = a + b
√
d with a, b ∈ Q. If b = 0 then we are just asking which

rational numbers are algebraic integers, which we have seen are only the integers.
So assume b 6= 0. Then the minimal polynomial of α over Q is

x2 − 2ax+ (a2 − db2).

Therefore, α is an algebraic integer if and only if 2a and (a2 − db2) are integers.
Now, since 2a is an integer, we have 4a2 is an integer, and thus d(2b)2 must

be an integer. If 2b was not an integer, then a p2 (for some prime p) would
appear in the denominator of (2b)2. This would force d to be divisible by p2

contradicting the square-free assumption. Thus 2b ∈ Z.
So let u = 2a, v = 2b. Then we have u2 − dv2 ≡ 0 (mod 4). Now, if v

is even, then so is u in which case a, b ∈ Z. So assume v is odd, we need to
show this can only happen if d ≡ 1 mod 4. Now, v2 ≡ 1 (mod 4), and u2 is
either 0, 1 (mod 4). But note it can’t be zero since d cant be 0 (mod 4) as its
square-free, therefore u2 ≡ 1 mod 4 and hence d ≡ 1 mod 4.
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Exercise 2.1.12. Check that if d is square-free and congruent to 1 modulo 4 then
Z[ 1+

√
d

2
] = {a+b

√
d

2
| a, b ∈ Z and a ≡ b (mod 2)}

Definition 2.1.13. Let α ∈ C. We let Z[α] = {f(α) | f ∈ Z[x]}, in other words
its the smallest ring containing both Z and α.

If we think of Z[α] simply as an additive group, then it is generated by
{1, α, α2, . . . }.

Definition 2.1.14. Let α ∈ C. We say Z[α] is finitely generated as an abelian
group if there exits a finite set {b1, . . . , bn} of elements bi ∈ Z[α] such that every
element of Z[α] may be written in the form

x1b1 + · · ·+ xnbn

with xi ∈ Z.

Theorem 2.1.15. Let α ∈ C. The following are equivalent:

α is an algebraic integer.

As an additive group, Z[α] is finitely generated.

α is an element of some subring of C having a finitely generated additive group.

αA ⊂ A with A ⊂ C some finitely generated additive subgroup. Here αA is
the set of elements of the form αx for x ∈ A.

Proof. =⇒ : Since α is an algebraic integer, it is the root of the monic
polynomial mα of degree n, say, which has integer coefficients. In this case we
claim that {1, α, · · · , αn−1} is generates Z[α]. For this we note that if f(α) ∈
Z[α], then by doing polynomial long division we have f(x) = q(x)mα(x) + r(x)
with deg(r) < n. Now if evaluate at α we get f(α) = r(α). But since deg(r) < n
we see that r(α) is in the Z span of {1, α, · · · , αn−1}. Thus giving the claim.

=⇒ =⇒ : This is trivial.
It remains to prove =⇒ . Let {a1, . . . , ar} be a basis of A. Then as

each αai ∈ A we can again write it in terms of this basis, so we get a system of
equations

αa1 = x1,1a1 + · · ·+ x1,rar

αa2 = x2,1a1 + · · ·+ x2,rar
...

αar = xr,1a1 + · · ·+ xr,rar
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with the xi,j ∈ Z. If we write this in matrix form by setting X = xi,j , a =
(a1, . . . , ar) then we have

XaT = αaT

(here ()T denotes transpose). Therefore, α is an eigenvalue of X , which is a
matrix with integer entries. Thus by Lemma 2.1.22.1.2 we must have that α is an
algebraic integer.

Using this we can now prove that OK is actually a ring.

Corollary 2.1.16. Let α, β be algebraic integers, then so are α+ β and αβ.

Proof. Since α, β are algebraic integers, then by Theorem 2.1.152.1.15 we have Z[α]
and Z[β] are finitely generated (as additive groups). Moreover, the ring Z[α, β]
(take this to be defined as the smallest ring containing Z, α, β) is also finitely
generated, since if {a1, . . . , an} generate Z[α] and {b1, . . . , bm} generates Z[β]
then {aibj}i,j generates Z[α, β]. Now, Z[α, β] contains both α+ β and αβ, then
2.1.152.1.15 tells us that they must also be algebraic integers.

Corollary 2.1.17. If K is a number field, then OK is a ring.

Proof. This follows at once from the above, since if α, β are algebraic integers
in K, then α + β ∈ K,αβ ∈ K and by the above, they are both algebraic
integers.

Exercise 2.1.18. Let K/F be an extension of number fields and assume that
α ∈ K is a root of a monic polynomial with coefficients in OF . Prove that α is
an algebraic integer.

Proposition 2.1.19. If K is a number field and α ∈ OK then TrK/Q(α) and
NK/Q(α) are both in Z.

Proof. By Corollary 2.1.92.1.9 we know Cα has integer coefficients and therefore by
Proposition 1.7.31.7.3 we get the result.

Warning 2.1.20. Note that if α is an algebraic integer then Aα need not have
integer entries. It possible that in different bases the matrix Aα does not have
integer entries. What is true is that in any basis the norm and trace will always
be integers as the corollary shows.

Warning 2.1.21. The converse is not true. For example
√

1+
√

17

2
has integer norm

and trace, but it is not an algebraic integer.

Proposition 2.1.22. Let α be an algebraic integer andK = Q(α), then Z[α] ⊂ OK .

Proof. Since α is an algebraic integer and by definition it is contained in K , we
have α ∈ OK , from which the result follows by Definition 2.1.132.1.13.
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Warning 2.1.23. If K = Q(α) is a number field, then is it not always the case
that OK = Z[α] as we can see from Theorem 2.1.112.1.11. You might ask if its possible
to always find some algebraic integer α′ such that OK = Z[α′] but this is also not
true. There are rings of integers that are not generated by a single element. For
example, if α is a root of x3 + x2 − 2x− 8, then one can show that if K = Q(α)
then OK is never of the form Z[α′] for any algebraic integer α′.

So you may ask, why do we care about OK instead of Z[α]? we’ll it turns out
OK is a better invariant of K as we will see later.

Proposition 2.1.24. Let K be a number field and let R be a subring of OK which
generates K as a field (i.e. Frac(R) = K). If R has unique factorization, then
R = OK .

Proof. We know that R ⊂ OK , we will show the opposite inclusion. Let α ∈ OK .
Then since K is the field of fractions of R we can find δ, γ ∈ R such that α = γ

δ
,

with δ, γ sharing no common factors other than a unit.
Now, since α is an algebraic integer, we can find some monic polynomial

such that
αn + an−1α

n−1 + · · ·+ a0 = 0.

If we now multiply through by δn we get

γn + an−1γ
n−1δ + · · ·+ a0δ

n = 0.

Since R is assumed to have unique factorization, we see that if $ is an irreducible
factor of δ, then $ is an irreducible factor of γn and thus is a factor of γ. But
we assumed that δ, γ shared no common factors other than units. So δ has no
irreducible factors and is therefore a unit. So OK ⊂ R, giving the result.

So, lets try to find a basis for OK .

Definition 2.1.25. Let K be a number field and let {b1, . . . , bn} be a basis
for K/Q. We call this an integral basis if OK = Z[b1, . . . , bn] = {x1b1 +
· · ·xnbn | xi ∈ Z} as an additive group. In practice, the set {bi} will be
some thing like {1, α, α2, . . . , αn−1} in which case, as rings, we have Z[α] =
Z[1, α, α2, . . . , αn−1]

Ok, so we know what we are looking for, so how are we going to make such a
basis. For this we will study the discriminant.
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2.2 Discriminants

Definition 2.2.1. Let K be a number field and let B = {b1, . . . , bn} be a set of
elements in K . The discriminant of B is defined as

∆(B) = det

TrK/Q(b1b1) · · · TrK/Q(b1bn)
...

...
TrK/Q(bnb1) · · · TrK/Q(bnbn)

 .

If needed we will denote the matrixTrK/Q(b1b1) · · · TrK/Q(b1bn)
...

...
TrK/Q(bnb1) · · · TrK/Q(bnbn)


by TB .

Example 2.2.2. LetK = Q(
√
d) with d square-free. Then lets take B = {1,

√
d}

which is our basis for K . Then we have

∆(B) = det

(
TrK/Q(1) TrK/Q(

√
d)

TrK/Q(
√
d) TrK/Q(d)

)
= det

(
2 0
0 2d

)
= 4d

Proposition 2.2.3. Let K be a number field and let B = {b1, . . . , bn} be a set
of elements in K . Then ∆(B) 6= 0 if and only if the elements in B are linearly
independent.

Proof. First recall from linear algebra, that if we have a finite dimensional vector
space V with a non-degenerate bilinear form 〈, 〉 on V , then {v1, . . . , vn} a basis
of V if and only if

det

〈v1, v1〉 · · · 〈v1, vn〉
...

...
〈vn, v1〉 · · · 〈vn, vn〉

 6= 0.

(This matrix appearing here is called the matrix associated to the pairing 〈, 〉
with respect to our chosen basis).

Now, by Proposition 1.7.81.7.8 we know that the trace pairing is perfect, which in
particular means it is non-degenerate. Moreover, ∆(B) is exactly the determinant
of the matrix associated to the trace pairing. So, we see that B consists on linearly
independent vectors if and only if ∆(B) 6= 0.

So this is a good way to check if a set of elements are a basis for K/Q. Now,
lets see how ∆(B) is related to ∆(B′) for B,B′ two different bases for K/Q.
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Proposition 2.2.4. Let K be a number field and B,B′ bases for K/Q. If P denotes
the change of basis matrix, then

∆(B) = det(P )2∆(B′).

Proof. Let TB = (TrK/Q(bibj))i,j be the matrix associated to the trace pairing
with respect to B. Then, it is a basic result in linear algebra that if you have
the matrix associated to a bilinear pairing and change the basis, then the
matrix gets conjugated by the change of basis matrix. This means that TB =
P tTB′P , (where ()t denotes transpose). Now, taking determinants we get ∆(B) =
det(TB) = det(P tTB′P ) = det(P t) det(TB′) det(P ) which gives the result once
you remember that det(P t) = det(P ).

Now, by the Primitive element theorem 1.5.111.5.11 we know that for a number field
we can always find some α such that K = Q(α) and in this case {1, α, . . . , αn−1}
is a basis of K/Q where n = [K : Q]. But as we mentioned above, we cant do
this for rings of integers. But, using the discriminant we can check if we have a
basis for our ring of integers.

First note that:

Proposition 2.2.5. Let K be a number field and B = {b1, . . . , bn} be elements in
OK , then ∆(B) ∈ Z.

Proof. If bibk is an algebraic integer, then TrK/Q(bibj) ∈ Z. Therefore the matrix
TB has integers coefficients, and therefore the determinant is a integer.

Warning 2.2.6. Just because we take a basis consisting of algebraic integers, it
doesn’t mean that it is an integral basis. To find an integral basis we need to be a
bit more careful.

Lemma 2.2.7. Let K be a number field and B = {b1, . . . , bn} be a basis for K/Q
consisting of algebraic integers. If B is not an integral basis then there exists an
algebraic integer of the form

α =
x1b1 + · · ·+ xnbn

p

where p is a prime and xi ∈ {0, . . . , p− 1} with not all xi zero. Moreover, if xi 6= 0
and we let B′ be the basis obtained by replacing bi with α, then

∆(B′) =
x2
i

p2
∆(B).

In particular p2 | ∆(B).

Proof. If B is not an integral basis then we can find some element φ ∈ OK such
that

φ = y1b1 + . . . ynbn
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with not all the yi in Z. So, let N be the least common multiple of the denomina-
tors of the yi (meaning Nyi ∈ Z for all i). Now, let p be a prime factor of N . If
we now consider (N/p)φ then all of the coefficients of bi are in 1

p
Z (so they have

denominator 1 or p.) and at least one of them has denominator p (since not all
the yi where in Z). So by relabelling, wlog we can assume

φ = y1b1 + . . . ynbn

with yi ∈ 1
p
Z

Now look at
ψ := by1cb1 + · · ·+ byncbn

(here bxc denotes the integer part of x). The both ψ and φ are algebraic integers
(as the bi are algebraic integers). Therefore, so is θ = φ− ψ. By construction, θ
has coefficients of the for xi

p
:= yi − byic where xi ∈ {0, . . . , p− 1} and not all

the xi are zero (since, again, not all the yi were in Z). This gives the first part of
the lemma.

Now, assume xi 6= 0, then let us replace bi ∈ B with θ to get a new basis B′

which again consists of algebraic integers. Next, we note that the change of basis
matrix from B to B′ is 

1 0 · · · x1
p
· · · 0

0 1 · · · x2
p
· · · 0

...
...

...
...

0 0 · · · xn
p
· · · 1


(here the column of xj/p’s is in the i-th column).

This matrix has determinant xi
p
. Therefore, by Proposition 2.2.42.2.4 we see that

∆(B′) =
x2i
p2

∆(B). But both ∆(B),∆(B′) are in Z by Proposition 2.2.52.2.5, therefore
p2 | ∆(B) giving the result.

Corollary 2.2.8. There exists a (finite) integral basis in K .

Proof. The fact that it is finite follows from K being a finite extension of Q. Let
B be a basis consisting of algebraic integers, now by repeatedly applying Lemma
2.2.72.2.7, we can obtain B such that | ∆(B) | is as small as possible. This must now
be an integral basis, otherwise Lemma 2.2.72.2.7 would allow us to find a new basis
B′ with |∆(B′)| < |∆(B)| contradicting our choice of B.

From this we also get:

Corollary 2.2.9. If B is a basis consisting of integral elements and ∆(B) is square-
free, then B is an integral basis.

Proof. This follows at once from Lemma 2.2.72.2.7.
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Warning 2.2.10. Note that the converse is not true! For example ifK = Q(
√
−1)

then B = {1,
√
−1} is an integral basis, but ∆(B) = −4 which is not square-free.

Remark 2.2.11. Note that this also gives us an algorithm for finding an integral
basis as follows:

1. Pick B a basis consisting of algebraic integers and calculate ∆(B).

2. For each prime p such that p2 | ∆(B) we can use Lemma 2.2.72.2.7 to get a
new basis B′ with smaller discriminant.

3. Now, repeat step one.

Example 2.2.12. Let K = Q(
√

5) and take B = {1,
√

5}. Then we have
∆(B) = 22 · 5. So, if we apply Lemma 2.2.72.2.7 we get a new basis B′ = {1, 1+

√
5

2
}

which has discriminant 5, which is square-free, and therefore is a basis of OK .

Proposition 2.2.13. Let B,B′ be two integral bases of a number field K . Then
∆(B) = ∆(B′).

Proof. In this case the change of basis matrix from B to B′ is an invertible matrix
with integer coefficients, so its determinant is ±1. Using Proposition 2.2.42.2.4, we see
that a change of basis matrix won’t alter the discriminant, since the factor of the
determinant squared is what appears.

Definition 2.2.14. Let K be a number field, and let B be an integral basis. Then
we define the discriminant of K as ∆(B). Note that by Proposition 2.2.132.2.13, this
definition does not depend on the choice of integral basis. So we will sometimes
denote it simply by ∆(OK).

2.2.15 Formulae for calculating discriminants

Let us now look at some alternative ways for calculating discriminants.

Proposition 2.2.16. Let K be a number field with basis B = {b1, . . . , bn} and let
σ1, . . . , σn be the embeddings of K into C. Now letM be the matrixσ1(b1) · · · σ1(bn)

...
...

σn(b1) · · · σn(bn)

 .

Then
∆(B) = det(M)2.

Proof. By Proposition 1.7.61.7.6 we know that TrK/Q(bibj) =
∑

k σk(bi)σk(bj) which
is the same as the (i, j) entry of M tM . Therefore

det(TB) = det(M tM) = det(M)2.
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Now, by the Primitive element theorem 1.5.111.5.11, for any number field K we can
find some α such that K = Q(α) and thus {1, α, α2, . . . , αn−1} is a basis for
K/Q where n = [K : Q]. In this case the discriminant is given by:

Proposition 2.2.17. Let K be a number field and B = {1, α, α2, . . . , αn−1} for
some α ∈ K . Then

∆(B) =
∏
i<j

(σi(α)− σj(α))2

where σi are the embeddings of K into C.

Proof. First we recall a classical linear algebra result relating to the Vandermonde
matrix, which states that

det

1 x1 x2
1 · · · xn−1

1
...

...
1 xn x2

n · · · xn−1
n

 =
∏
i<j

(xi − xj).

Combining this with Proposition 2.2.162.2.16 gives the result.

Lastly, we have probably the more useful formula for computing the discrimi-
nant in this case, but before we state it we need the following lemma.

Lemma 2.2.18. Let f be a monic irreducible polynomial over a number field K and
let α be one of its roots in C. Then

f ′(α) =
∏
β 6=α

(α− β),

where the product is over the roots of f different from α.

Proof. We first write f(x) = (x−α)g(x) which we can do (over C) as α is a root
of f , where now g(x) =

∏
β 6=α(x− β). Differentiating we get

f ′(x) = g(x) + (x− α)g′(x).

If we now evaluate at α we get the result.

Proposition 2.2.19. Let K = Q(α) be a number field with n = [K : Q] and let
B = {1, α, α2, . . . , αn−1}. Then

∆(B) = (−1)
n(n−1)

2 NK/Q(m′α(α))

wherem′α is the derivative ofmα(x) (which we recall denotes the minimal polynomial
of α).
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Proof. By Proposition 2.2.172.2.17 we have ∆(B) =
∏
i<j(αi−αj)2 where αk := σk(α).

Next, we note that the number of terms in this product is 1 + 2 + · · ·+ (n− 1) =
n(n−1)

2
. So if we write each term as (αi − αj)2 = −(αi − αj)(αj − αi) we get

∆(B) = (−1)
n(n−1)

2

n∏
i=1

∏
i 6=j

(αi − αj).

Now, by Lemma 2.2.182.2.18 and Proposition 1.7.61.7.6 we see that

NK/Q(m′α(α)) =
n∏
i=1

m′α(αi) =
n∏
i=1

∏
i6=j

(αi − αj),

which gives the result.

Example 2.2.20. Let α be a root of mα(x) = x8 − 2 (which is irreducible by
Eisensteins criterion 1.2.151.2.15). Therefore Q(α) has degree 8 over Q and a basis is
B := {1, α, . . . , α7}. From the above we then have

∆(B) = (−1)8·7/2NQ(α)/Q(m′α(α)) = NQ(α)/Q(8α7)

= NQ(α)/Q(8)NQ(α)/Q(α7) = 88 · (−2)7 = −231

Here we use that NK/Q(α7) = NK/Q(α)7 and that NK/Q(α) = −2.

Now, by Lemma 2.2.72.2.7, if we want to find an integral basis, we need to first
pick a basis B of algebraic integers, and then check for which primes p|∆(B)
we have p2|∆(B). Its at these primes where we might need to modify our basis
candidate B.

In order to make this simpler, here is a simple trick.

Lemma 2.2.21. Let K = Q(α)and α be an algebraic integer such that mα satisfies
Eisensteins Criterion 1.2.151.2.15 for a prime p. Then none of the elements

φ =
1

p
(x0 + x1α+ · · ·+ xn−1α

n−1)

is an algebraic integer, where n = deg(mα) and xi ∈ {0, . . . , p− 1}.

Proof. We will only prove the case when mα is Eisenstein, since the proof of the
more general case is identical.

Suppose for contradiction that φ ∈ OK and let xd be the first non-zero
coefficient, so

φ =
1

p
(xdα

d + xd+1α
d+1 + · · ·+ xn−1α

n−1) ∈ OK .
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Now, rewrite this as φ = 1
p
(xdα

d + αd+1β) for some β ∈ OK . Next, multiply
through by αn−1−d, then we have

xdα
n−1

p
+
αnβ

p
∈ OK .

Now, since mα satisfies Eisenstein at p, we see that αn = pf(α) for some
f ∈ Z[x] and therefore the above gives us that

xdα
n−1

p
+ βf(α) ∈ OK .

and thus
xdα

n−1

p
∈ OK .

Lets now calculate the norm of this:

NK/Q

(
xdα

n−1

p

)
=
xndNK/Q(α)n−1

pn
.

By Eisenstein the constant coefficient of mα is divisible by p but not p2, so since
the constant coefficient of mα is NK/Q(α) we see that NK/Q(α) = pa where p - a.
Therefore we have

NK/Q

(
xdα

n−1

p

)
=
xndp

n−1an−1

pn
=
xnda

n−1

p
.

But this cant be in Z since p doesn’t divide xd or a, and this gives us a contradic-
tion since Proposition 2.1.192.1.19 says that the norm of an algebraic integer must be
an integer. So φ couldn’t have been an algebraic integer.

How do we use this? well let me show you one use.

Example 2.2.22. Let α be a root of x8 − 2. Then as we saw in Example 2.2.202.2.20
we know that B = {1, α, . . . , α7} has discriminant −231. So the we only need to
check at p = 2. But mα satisfies Eisensteins criterion 1.2.151.2.15 with p = 2, therefore
the Lemma 2.2.212.2.21 tells us that in fact this must be an integral basis, since dividing
by 2 wont ever give us new algebraic integers.

2.2.23 Discriminants of trinomials

Lemma 2.2.24. Let α be an algebraic number with minimal polynomial mα and
let β ∈ Q(α) be such that α = a

bβ+c
with a, b, c ∈ Q and b 6= 0. Then deg(mα) =

deg(mβ).

Proof. First consider mα(α) = mα( a
bβ+c

) = 0. By clearing denominators, we see
that β satisfies some polynomial f(x) of degree deg(mα). Therefore, since mβ

32



is the minimal polynomial of β we see that mβ must divide f(x) and therefore
deg(mβ) ≤ deg(mα).

Now, note that β = a
αb
− c

b
= 1

b
(aα−1 + c) (as b 6= 0). The same argument

now shows that deg(mα−1) ≤ deg(mβ). Now, if you do Exercise 1.4.91.4.9 you will
see that deg(mα) = deg(mα−1), which gives the result.

Alternatively here is a slicker proof by Alexandros Groutides: Note that
Q(α) = Q(β) (just do double inclusion). Then since deg(mβ) = [Q(β) : Q] =
[Q(α) : Q] = deg(mα) (by Cor. 1.3.121.3.12) we get the result.

Theorem 2.2.25. Let K = Q(α) a number field withmα(x) = xn+ax+ b. Then

∆({1, α, . . . , αn−1}) = (−1)
n(n−1)

2 (nnbn−1 + (−1)n−1(n− 1)n−1an).

Proof. From Proposition 2.2.192.2.19 we have

∆({1, α, . . . , αn−1} = (−1)
n(n−1)

2 NK/Q(m′α(α))).

Now, let β = m′α(α), then we have

β = nαn−1 + a = −(n− 1)a− nbα−1.

Since αn + aα+ b = 0 implies nαn−1 = −na− nbα−1. Which gives

α =
−nb

β + (n− 1)a
.

Now, using Lemma 2.2.242.2.24 we see that n = deg(mα) = deg(mβ). Moreover, if
we take mα(x) = xn + ax+ b, evaluate at −nb

β+(n−1)a
and clear denominators, we

get that

(β + (n− 1)a)n − na(β + (n− 1)a)n−1 + (−n)nbn−1 = 0.

Therefore β is a root of

(x+ (n− 1)a)n − na(x+ (n− 1)a)n−1 + (−n)nbn−1

which is a monic polynomial of degree n = deg(mβ), therefore this is the minimal
polynomial of β.

Now, by Proposition 1.6.61.6.6 or Corollary 1.6.81.6.8 we have Cβ = mβ . Therefore
by Proposition 1.7.31.7.3 we see that (−1)n times the constant coefficient of mβ is
NK/Q(β). Therefore we get

NK/Q(β) = nnbn−1 + (−1)n−1(n− 1)n−1an.

which gives the result.
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Corollary 2.2.26. Let K = Q(α) be a number field with mα(x) = x3 + ax + b.
Then

∆({1, α, α2}) = −27b2 − 4a3.

Let K = Q(α) a number field with [K : Q] = 3. Then mα(x) = x3 + ax2 +
bx + c for a, b, c ∈ Q. If we replace α with α′ := α + a/3 then Q(α) = Q(α′)
but this has the effect of removing the x2 term in the minimal polynomial, so
after relabelling if necessary, we have K = Q(α) with mα(x) = x3 + ax + b.
Therefore Corollary 2.2.262.2.26 gives us a quick way to find the discriminant of a
cubic field.

Example 2.2.27. Let α be a root of x3 + x + 1, and let K = Q(α). Then
∆({1, α, α2}) = −31 which is square-free and therefore by Corollary 2.2.92.2.9
{1, α, α2} is an integral basis and therefore OK = Z[α].

Exercise 2.2.28. Using Theorem 2.2.252.2.25 show what if K = Q(
√
d) with d a

square-free integer, then

∆(OK) =

{
d if d ≡ 1 (mod 4)

4d if d ≡ 2, 3 (mod 4).

2.3 Cyclotomic fields

One of the more interesting number fields are the ones we get by adjoining a root
of unity to Q. In other words Q(ζn) where ζn is a root of xn − 1. From now on,
when we write ζn we mean a primitive n-root of unity, meaning n is the smallest
non-zero integer such that ζnn = 1.

Lets look at the case n = p for p some prime number. Then from Example
1.2.161.2.16 we know that xp − 1 is not irreducible, but

Φp(x) = 1 + x+ · · ·+ xp−1

is minimal. So mζp = Φp.
More generally, here is a Lemma we will use without proof.

Lemma 2.3.1. For n any integer, Φn is an irreducible polynomial of degree ϕ(n)
(where ϕ is Euler’s Totient function).

Theorem 2.3.2. Let ζp be a p-th root of unity for p an odd prime, let λp = 1− ζp
and K = Q(ζp). Then OK = Z[ζp] = Z[λp] moreover

∆({1, ζp, . . . , ζp−2
p }) = ∆({1, λp, . . . , λp−2

p }) = (−1)
(p−1)

2 pp−2
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Proof. First note [K : Q] = p− 1.
Since ζp = 1 − λp we at once get Z[ζp] = Z[λp] (just do double inclusion).

Next, let αi = σi(ζp) denote the conjugates of ζp, which is the same as the image
of ζp under one of the embeddings σi : Q(ζp)→ C. Now by Proposition 2.2.172.2.17
we have

∆({1, ζp, . . . , ζp−2
p }) =

∏
i<j

(αi − αj)2 =
∏
i<j

((1− αi)− (1− αj))2

= ∆({1, λp, . . . , λp−2
p })

Now, by Proposition 2.2.192.2.19, we have

∆({1, ζp, · · · , ζp−2
p }) = (−1)

(p−1)(p−2)
2 NK/Q(Φ′p(ζp))

Since p is odd (−1)
(p−1)(p−2)

2 = (−1)
(p−1)

2 . Next, we see that

Φ′p(x) =
pxp−1(x− 1)− (xp − 1)

(x− 1)2

therefore

Φ′p(ζp) = −
pζp−1
p

λp
.

Lastly, note that NK/Q(ζp) = 1, since this is the constant term in its min-
imal polynomial. Similarly, from the computation in Example 1.2.161.2.16, we see
NK/Q(λp) = p. Putting this all together, we get

NK/Q(Φ′p(ζp)) =
NK/Q(p)NKQ(ζp)

p−1

NK/Q(−λp)
= (−1)p−1pp−2 = pp−2

So the last thing we need to prove is that OK = Z[ζp]. From the calculation
we just did, the only prime dividing the discriminant is p, therefore Lemma 2.2.72.2.7
tells us the only prime we need to check is p. But from Lemma 2.2.212.2.21 we know
that dividing by p wont give us any new integral elements, so this must be an
integral basis which give the result.

Exercise 2.3.3. 1. Let p be a prime, k a positive integer and ζpk be a pk-th
root of unity and let λpk = 1− ζpk . Show that

Z[ζpk ] = Z[λpk ]

and
∆({1, ζpk , . . . , ζ

ϕ(pk)

pk
}) = ∆({1, λpk , . . . , λ

ϕ(pk)

pk
}).

Here ϕ is the usual Euler totient function.
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2. Show that ∆({1, ζpk , . . . , ζ
ϕ(pk)

pk
}) divides pkϕ(pk).

3. Let p be a prime and n = pk. Let S = {1 ≤ x ≤ n | p - x} (i.e the set of
elements less than n which are not divisible by p). Show that∏

r∈S

(1− ζrpk) = p

and from this deduce that λϕ(pk)

pk
divides p in Z[ζpk ]. [Hint: Consider the

polynomial

f(x) =
xp

k − 1

xpk−1 − 1
= 1 + xp

k−1

+ x2pk−1

+ · · ·+ x(p−1)pk−1

]

4. Using the above prove that if K = Q(ζpk) then OK = Z[ζpk ] = Z[λpk ].

If one works harder, one can show (but we wont prove this):

Theorem 2.3.4. Let n be a positive integer and ζn a root of unity. If K = Q(ζn)
then

OK = Z[ζn].

Exercise 2.3.5. Let n be a positive integer and let ζn be an n-th root of unity.
Show that if k is coprime to n then

1 + ζn + · · ·+ ζk−1
n

is a unity in Z[ζn].
[Hint:Check that its inverse is 1−ζn

1−ζkn
]

Exercise 2.3.6. Let p be a prime and n = pk. Show that

p = u(1− ζn)ϕ(n)

where u ∈ Z[ζn]× (i.e. u is a unit).
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Chapter 3

Factorization in rings of integers

We now move on to the study of primes and prime ideals in rings of integers.

3.1 Units

One of the things we would like to know is what are the units in OK for K some
number field.

Proposition 3.1.1. Let K be a number field and let O×K denote the group of units,
then

O×K = {α ∈ OK | NK/Q(α) = ±1}

Proof. If α is a unit the α−1 ∈ OK and therefore NK/Q(α)NK/Q(α)−1 =
NK/Q(αα−1) = NK/Q(1) = 1. So NK/Q(α) ∈ Z× and is therefore ±1.

Now, assume NK/Q(α) = ±1 and let σi be the embeddings of K into C with
σ1 the identity embedding. Then

α
n∏
i=2

σi(α) = ±1

which means α−1 = ±
∏n

i=2 σi(α) but each σi(α) is again an algebraic integer
so α−1 ∈ Z ∩K = OK (see Remark 2.1.72.1.7).

Example 3.1.2. Let us look at K = Q(
√

2). In this case we have already seen
that OK = Z[

√
2]. Now, is 1 +

√
2 a unit? Well

NK/Q(1 +
√

2) = (1 +
√

2)(1−
√

2) = −1

So yes it is.

Next we have a theorem which we will use but not prove.
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Theorem 3.1.3 (Dirichlet’s Unit theorem). Let K be a number field and let

µK = {x ∈ K× | xn = 1 for some n ∈ Z>0}.

This is the set of roots of unity in K . Let r1 denote the number of real embeddings of
K and r2 the number of complex conjugate pairs of embeddings. Then

O×K ∼= µK × Zr1+r2−1

Corollary 3.1.4. If K = Q(
√
−d) with d ∈ Z>0 a square-free integer, then O×K is

µK .

Proof. In this case r1 = 0 and r2 = 1 therefore Theorem 3.1.33.1.3 gives the result.

Exercise 3.1.5. Show that if K = Q(
√
d) with d ∈ Z a square-free integer, then

µK =


{±1,±

√
−1} if d = −1. (3.1)

{1, ζ, ζ2, ζ3, ζ4, ζ5} if d = −3 (3.2)

{±1} otherwise (3.3)

where ζ = e2π/6 = 1+
√
−3

2
.

Corollary 3.1.6. Let K = Q(
√
d) with d a positive square-free integer. Then

O×K ∼= {±1} × Z.

In this case there is a unique unit in u ∈ O×K which generates O×K/{±1} and under
the standard embedding we have u ≥ 1. This unit u is called the fundamental unit.

Proof. Note that in this case µK = {±1}. So the structure of the group of units
follows from Theorem 3.1.33.1.3. Now, O×K/{±1} ∼= Z so take any unit v mapping to
a generator of O×K/{±1}. Then one of {±v,±v−1} is in the set (1,∞). So let u
be this unit.

Proposition 3.1.7. Let K be a number field and let α ∈ OK . If NK/Q(α) = ±p
for p a prime number, then α is an irreducible element of OK .

Proof. Let α = βγ we want to show that one of β, γ is a unit. Now taking norms
we have

NK/Q(α) = NK/Q(β)NK/Q(γ) = ±p.

Therefore as p is prime we must have NK/Q(β) = ±1 or NK/Q(γ) = ±1. In
either case we get the result.

Remark 3.1.8. The converse is false. For example in Z[
√
−1] the element 3 is

irreducible and has norm 9.

Proposition 3.1.9. Let K be a number field and α ∈ OK be non-zero and not a
unit. Then α can be written as a product of irreducible elements.
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Proof. We prove this by induction on |NK/Q(α)|. If NK/Q(α) = 2 then α is irre-
ducible so we are done. Now assume it is true for all β with |NK/Q(β)| <
|NK/Q(α). If α is irreducible then we are done, otherwise α = βγ with
|NK/Q(β)|, |NK/Q(γ)| < |NK/Q(α)|. Therefore both β and γ can be factored
into irreducibles and thus so can α.

Definition 3.1.10. We say a ring has unique factorization if whenever

p1p2 · · · pn = q1q2 · · · qm

for pi, qi irreducible elements, then n = m and after possibly reordering we can
find units ui such that pi = uiqi for all i.

Example 3.1.11. The Z has unique factorization as does Z[
√
−2].

But this is not usually the case, for example Z[
√
−10] doesn’t have unique

factorization as 10 = 2 · 5 = −
√
−10
√
−10 all of which are irreducible as can be

seen by taking norms: Note that NK/Q(2) = 4, NK/Q(5) = 25, NK/Q(
√
−10) =

10. Now, every element in K = Q(
√
−10) has norm of the form x2 + 10y2 and

this can never be ±2,±5, so there can’t be any irreducible elements dividing
2, 5,
√
−10 therefore they are irreducible.

In order to fix this, we will later decompose things into prime ideals and work
with this, but before this we need to understand ideals better.

3.2 Ideals in rings of integers

Let me recall some definition you may have seen in other courses.

Definition 3.2.1. Let R be a commutative ring. Then R is called Noetherian any
of the following equivalent conditions holds:

1. Every ideal is finitely generated.

2. Every increasing chain of ideals I1 ⊂ I2 ⊂ . . . is eventually constant.

3. Every non-empty set S of ideals contains a (not necessarily unique) maximal
member.

Exercise 3.2.2. Check that these definitions are all equivalent.

Proposition 3.2.3. Let K be a number field and OK its ring of integers. Then OK
is a Noetherian ring.

Proof. We saw in Corollary 2.2.82.2.8 that OK is finitely generated as an additive
group. Now, any ideal a ⊂ OK is an additive subgroup of the abelian group OK
and therefore is also finitely generated.aa So OK is Noetherian.

aBe warned, its not true in general that a subgroup of a finitely generated group G is finitely
generated. You really need G to be abelian for this to work.
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Proposition 3.2.4. Let K be a number field and a a non-zero ideal in OK . Then a
contains some positive integer and moreover the quotient ring OK/a is finite.

Proof. Let α ∈ a\0 and N = NK/Q(α). Since α 6= 0, then N 6= 0. Now, by
Proposition 1.7.61.7.6 we see that N = αβ where β is a product of conjugates of α
so it is in Z. Moreover, β ∈ OK since β = N/α ∈ K (recall OK = K ∩ Z). But
since a is an ideal N = αβ ∈ a.

Now, lets use this to prove the quotient is finite. First note that since
N ∈ a then (N) ⊂ a therefore |OK/a| ≤ |OK/(N)|. Secondly, since OK
is finitely generated as an abelian group, by picking an integral basis we get
an isomorphism (of additive abelian groups) OK ∼= Zn where n = [K : Q].
Therefore OK/(N) ∼= (Z/NZ)n which is finite. Therefore so is OK/a.

Lemma 3.2.5. A finite integral domain is a field.

Proof. Let R be a finite, non-trivial integral domain. Let r ∈ R\0. We need to
show that r has an inverse. Here is the trick: consider the sequence r, r2, r3, . . . .
Since R is finite at some point we must have rn = rm for some m < n. Then
rm(rn−m − 1) = 0, but this is where being an integral domain comes in, since
this means either rm = 0 or rn−m − 1 = 0. Since r 6= 0 and R is an integral
domain rm 6= 0. Therefore rn−m = 1. This means r−1 = rn−m−1 and therefore
r has an inverse.

Corollary 3.2.6. Let K be a number field. Then every non-zero prime ideal in OK
is maximal.

Proof. By Proposition 1.1.221.1.22 we know that if p ⊂ OK is a prime ideal then OK/p
is an integral domain. Now, by Proposition 3.2.43.2.4 OK/p is finite. But by Lemma
3.2.53.2.5 this is then a field. Now, using Proposition 1.1.221.1.22 again, p is maximal.

Definition 3.2.7. Let R,A be rings with A ⊂ R a subring and x ∈ R. We say x
is integral over A if there exist ai ∈ A such that

xn + an−1x
n−1 + · · ·+ a0 = 0

for some n.
Let A′ be the set of all elements of R that are integral over A. Then similarly

to how we prove Corollary 2.1.162.1.16, A′ is a ring which we call the integral closure
of A in R.

Moreover, if R is an integral domain and we let

Frac(R) := {a/b|a, b ∈ R, b 6= 0}

be its fields of fractions (this can alternatively be defined as smallest field contain-
ing R), then we say R is integrally closed, if it is integrally closed in its field of
fractions.

40



3.3 Dedekind domains

Next we will study properties of rings of integers. It turns out they are of a very
special type, called Dedekind domains.

Definition 3.3.1. A Dedekind domain is an integral domain R such that:

1. R is Noetherian.

2. Every non-zero prime ideal is maximal.

3. R is integrally closed.

Theorem 3.3.2. Let K be a number field with ring of integers OK . Then OK is a
Dedekind domain.

Proof. By Proposition 3.2.33.2.3 we get (1) and by Corollary 3.2.63.2.6 we get (2).
So we only need to prove OK is integrally closed.
Let γ = α/β ∈ K satisfy a monic polynomial with coefficients in OK , then I

claim that it is in fact an algebraic integer and therefore it is in K ∩ Z = OK .
(Note Frac(OK) = K .)

The claim is Exercise 2.1.182.1.18.

Dedekind domains are great. Lets look at some of their properties.

Lemma 3.3.3. Let R be a Dedekind domain. Then every ideal contains a product of
prime ideals.

Proof. Assume for contradiction this is not the case. Let S denote the set of all
ideals that do not contain a product of prime ideals. Then, since R is Noetherian,
by Definition 3.2.13.2.1(3), S must contain a maximal element m (not to be confused
with maximal ideal, here maximal means with respect to the property of not
containing a product of prime ideals). Now m cannot be prime (otherwise m ⊆ m
gives a contradiction). Therefore we can find r, s ∈ R\m such that rs ∈ m. Now
the ideals (r) + m and (s) + m are both larger then m so must contain a product
of prime ideals, but then so does their product ((r) + m)((s) + m). This product
is contained in m (since rs ∈ m) so we have a contradiction.

Lemma 3.3.4. Let R be a Dedekind domain with field of fractions K and a a proper
ideal . Then there is an element x ∈ K\R such that xa ⊂ R.

Proof. Let a ∈ a be any non-zero element. By Lemma 3.3.33.3.3 the ideal (a) contains
a product of prime ideals. So lets take prime ideals pi such that

∏m

i=1 pi ⊂ (a)
with m as small as possible. Now, since every proper ideal is contained in a
maximal ideal p (see Proposition 1.1.221.1.22), which is also a prime ideal (as maximal
ideals are always prime). Therefore a ⊂ p, so

∏
i pi ⊂ p.
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Now p must contain some pi since if not, we can take ai ∈ pi\p then p
contains

∏
i ai but none of the ai which contradicts p being a prime ideal. So

after possibly relabelling we have p1 ⊂ p. But by Definition 3.3.13.3.1, in a Dedekind
domain all prime ideals are maximal, so p = p1.

Since m was taken as small as possible, (a) can’t contain any smaller product
of prime ideals, so we can find b ∈ (

∏m

i=2 pi)\(a).
We claim that taking x = b

a
gives the result: First note x ∈ K\R since

otherwise b
a

= c ∈ R therefore b = ac ∈ (a) which contradicts our choice of b.
Moreover, we claim that xa ⊂ R. To see this note that since bp ⊂

∏
i pi ⊂ (a)

we have xp ⊂ R and therefore since a ⊂ p we have xa ⊂ xp ⊂ R.

Theorem 3.3.5. Let R be a Dedekind domain and a an ideal in R. Then there is
an ideal b such that ab is principal.

Proof. Let α ∈ a\0 and let

b = {β ∈ R | βa ∈ (α)}.

This is again an ideal and it is non-zero since α 6= 0. By definition we have

ab ⊂ (α) (†)

so we need to show equality.
For this consider the set c = 1

α
ab. This is a subset of R by (†) and is in fact an

ideal. Now, if c = R then ab = (α) and we are done. So assume for contradiction
that c is a proper ideal. Then by Lemma 3.3.43.3.4 we can find x ∈ K\R with K the
fraction field of R and xc ⊂ R.

Next, we note that c contains b since α ∈ a, therefore xb ⊂ xc ⊂ R.
Moreover, since xc = x

α
ba ⊂ R we have xba ⊂ (α). Now, if we look back at the

definition of b we see that since xb ⊂ R we have xb ⊂ b.
If we let β1, . . . , βn be a generating set for b, we can use xb ⊂ b to think of

multiplication by x on b as a matrix Ax defined by

x(β1, . . . , βn)t = Ax(β1, . . . , βn)t.

Ax is a n×n matrix over R which has x as an eigenvalue. This means, x satisfies
a monic polynomial with coefficients in R. But R is integrally closed, so x ∈ R
which gives a contradiction as we took x ∈ K\R. This completes the proof.

Exercise 3.3.6. Show that if a is an ideal in an integral domain R and (α)a is
principal for α ∈ R\0, then a is principal.

Definition 3.3.7. Let R be a Dedekind domain and K its field of fractions. A
fractional ideal is a subset a ⊂ K such that

1. a is an abelian group under addition.
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2. xa ⊂ a for every x ∈ R.

3. There exists some x ∈ R such that xa ⊂ R.

Example 3.3.8. Let q ∈ Q, then

(q) = {nq | n ∈ Z}

is a fractional ideal. More generally, if R is an Dedekind domain K its field of
fractions and α ⊂ K . Then for any ideal a ∈ R, 1

α
a is a fractional ideal.

Warning 3.3.9. If a is a fractional ideal and x, y ∈ a then it is not necessarily
true that xy ∈ a.

Definition 3.3.10. Let R be a Dedekind ring and K its field of fractions. For
each x ∈ K we call the fractional ideal

(x) = {xy | y ∈ R}

a principal fractional ideal.

Proposition 3.3.11. Let R be a Dedekind domain and K its field of fractions. Then
the set JK of non-zero fractional ideals forms a group under multiplication with
(1) = R being the identity.

Proof. As we had before, if a, b are fractional ideals, then ab is defined as the
fractional ideal generated by products of elements in a and b. This is clearly
associative, so we only need to check the existence of inverses.

If a is a proper ideal of R, then by Theorem 3.3.53.3.5 we can find an ideal b such
that ab = (α) for some α. Then setting a−1 = 1

α
b gives an inverse to a. If a is a

fractional ideal, then we can find some x ∈ R such that xa ⊂ R is an ideal (not
just a fractional ideal), call it c, then a−1 = xc−1 is the inverse.

Remark 3.3.12. It follows, that if a is a fractional ideal in R, then

a−1 = {x ∈ K|xa ⊂ R}

where K is the field of fractions of R.

Corollary 3.3.13. If a, b, c are non-zero ideals in a Dedekind domain and ab = ac
then b = c.

Proof. Multiplying on the left by a−1 gives the result.

Corollary 3.3.14. Let a, b be ideals in a Dedekind domain. Then a | b if and only
if b ⊂ a.
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Proof. If a | b then by definition we have b = ca, which means b ⊂ a. Conversely,
assume that b ⊂ a. Then by Theorem 3.3.53.3.5 we can find an ideal m such that
am = (α). Now, mb ⊂ am = (α) therefore c = 1

α
mb is again in R and moreover

it is an ideal (since, for example it is the product of two fractional ideals). The
result follows from then noting that ac = b.

We can now use this as a fix to our problem of not being able to factor
uniquely.

Theorem 3.3.15. Let R be a Dedekind domain, then every ideal a can be written
uniquely as a product of prime ideals, i.e,

a = p1p2 . . . pn,

with pi prime ideals (not necessarily distinct).

Proof. Lets begin by showing that every ideal can be written as a product of
prime ideal. Assume for contradiction that this is not the case. Then the set
of proper ideals which are not a product of prime ideals, must have a maximal
element by Definition 3.2.13.2.1 (3). Let b be this maximal element. Then b must be
contained in some maximal ideal p of R (which we recall is also prime). Then by
Corollary 3.3.143.3.14 we have b = pc.

This implies b ⊂ c and this must be a strict containment as otherwise if c = b
then b = bp which by Corollary 3.3.133.3.13 would mean p = R, which cannot happen
as p is a proper ideal.

Now, since c is larger than b we must have c being a product of prime ideals.
So then pc = b is also a product of prime ideals contradicting our assumption.

Lets now prove that the representation as a product of prime ideals is unique.
Suppose we have

p1p2 . . . pn = q1q2 . . . qm

with pi, qi not necessarily distinct prime ideals. Then q1 . . . qm ⊂ p1, which
means p1 contains some qi (see the proof of Lemma 3.3.43.3.4 to see why this is true).
By relabelling the qi we can assume q1 ⊂ p1. But since all prime ideals in a
Dedekind ring are maximal we must have q1 = p1. So we can cancel this from
each side of the equality to get

p2 . . . pn = q2 . . . qm.

Continuing like this we get n = m and after relabelling pi = qi, which completes
the proof.

Notation 3.3.16. Since ideal multiplication commutes, we usually write the
factorization of a an ideal as

a = pe11 pe12 . . . perr
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with pi distinct prime ideals.

Corollary 3.3.17. Let K be a number field. Then every ideal in OK can factored
uniquely into a product of prime ideals.

Proof. We know OK is a Dedekind domain, so the result follows.

Definition 3.3.18. Let R be a Dedekind domain and let a, b be ideals. Then
we define the greatest common divisor gcd and least common multiple lcm as
follows: Let a =

∏
i p

ni
i and b =

∏
i p

mi
i then

gcd(a, b) =
∏
i

p
min(ni,mi)
i lcm(a, b) =

∏
i

p
max(ni,mi)
i .

Here the pi are all different.

Proposition 3.3.19. If R is a Dedekind domain and a, b are ideals. Then

gcd(a, b) = a + b

and
lcm(a, b) = a ∩ b

Proof. Corollary 3.3.143.3.14 tells us that division turns into containment for ideals, so
the greatest common divisor of a, b is the smallest ideal containing both a, b
which by definition is a + b.

Similarly, the least common multiple is the largest ideal contained in both of
them, which by definition is a ∩ b.

Exercise 3.3.20. Show that gcd(a, b) lcm(a, b) = ab.

Theorem 3.3.21 (Chinese remainder theorem). Let R be a commutative ring and
let a, b be coprime ideals (i.e., a + b = (1)) then

R/ab ∼= R/a×R/b

Proof. Consider the ring homomorphism

φ : R→ R/a×R/b

given by φ(x) = (x (mod a), x (mod b)). Then the kernel is given by a ∩ b.
Now, since a + b = (1) then

a ∩ b = (a ∩ b)(a + b) = (a ∩ b)(a) + (a ∩ b)(b) ⊂ ab.

Moreover, its easy to see ab ⊂ a∩b, therefore ab = a∩b. So we have an injective
ring homomorphism

φ′ : R/ab = R/(a ∩ b) −→ R/a×R/b.
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It remains to check it is surjective. Write 1 = a+ b for a ∈ a, b ∈ b, then for
any (r, s) ∈ R2 the element x = as + br ∈ R is such that x ≡ r (mod a) and
x ≡ s (mod b) which gives us subjectivity.

Remark 3.3.22. By induction one can extend this to the case where we have
several pairwise coprime ideals.

Theorem 3.3.23. Let R be a Dedekind domain and let a be an ideal. Then for any
α ∈ a with α non-zero we can find β ∈ a such that a = (α, β).

Proof. We will find a β such that a = gcd((α), (β)) = (α) + (β) = (α, β).
Let

a = pn11 pn22 · · · pnrr
with pi distinct prime ideals. Then since (α) ⊂ a we have (α) ⊂ pnii for all i,
in other words α is divisible by the pnii . Now, let q1, . . . , qs be any other prime
ideals dividing (α) (if any exist). So we have

(α) =
∏
i

pnii ×
∏
j

qj.

We construct β as follows. Take βi ∈ pnii \p
ni+1
i and then use the Chinese

remainder theorem 3.3.213.3.21 to find β ∈ R such that β ≡ βi (mod pni+1
i ) for

i ∈ {1, . . . , r} and β ≡ 1 (mod qj) for j ∈ {1, . . . , s}. Note that we can do this,
and the pi, qj are all pairwise distinct so qj + pnii = (1) (as qj is maximal) for
all i, j and moreover, pnii + p

nj
j = gcd(pnii , p

nj
j ) which by Definition 3.3.183.3.18 is just

(1).
So now, Definition 3.3.183.3.18 gives us gcd((α), (β)) =

∏
i p

ni
i = a and therefore

β ∈ a which finishes the proof.

Theorem 3.3.24. A Dedekind domain is a UFD if and only if it is a PID.

Proof. If R is a Dedekind domain that is a PID, then by Proposition 1.2.61.2.6 it is a
UFD.

Now, let R be a UFD and assume for contradiction it is not a PID. Then by
Theorem 3.3.153.3.15 there must exist at least one non-principal prime ideal, call it p.
Now, let S be the set of ideals a such that ap is principal. By Theorem 3.3.53.3.5 S
is non-empty, so we can do the usual trick and find a maximal element, m. Let
mp = (α), we claim α must be irreducible. Assuming this for the moment, if
we take a ∈ p\(α) and b ∈ m\(α) (which we can do in the first case as p is not
principal and in the second by Exercise 3.3.63.3.6) then ab ∈ (α) but α | ab but α - a
and α - b which cannot happen in a UFD.

So it remains to prove the claim that α is irreducible. For this we note that if
α = βγ then one of (β) or (γ) would be of the form pb for some b dividing m,
but m is maximal so b = m and therefore one of β, γ is a unit.
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3.4 Norms of ideals

Definition 3.4.1. Let K be a number field and a ⊂ OK an ideal. We define the
norm of a to be

N(a) := |OK/a|.

Why does this deserve to be called norm? Well lets justify this.

Proposition 3.4.2. Let K be a number field and let a, b be ideals in OK , then

N(ab) = N(a)N(b).

Proof. By factoring each of a, b into prime ideals, it suffices to prove that N(pb) =
N(p)N(b) where p is a prime ideal and b is any proper ideal.

Now, by group theory b/pb is a subgroup of OK/pb and the quotient is
OK/b. This means

|OK/pb| = |OK/b||b/pb|.

So we need to show |b/pb| = |OK/p|.
Since p 6= OK and (fractional) ideals form a group we have pb 6= b (otherwise

we could multiply through by b−1 giving a contradiction), so let x ∈ b\bp. Let us
consider the map

OK −→ b/pb

given by a 7→ ax+pb. The kernel of this map contains p and the map is non-zero
by our choice of x, so the kernel is an ideal containing p. But p is maximal, so
the kernel must be p. Therefore we have an injective map

OK/p −→ b/pb.

Now, to see that this map is also surjective we just note that by unique
factorization, there cannot be any ideals strictly between b and pb. Since
otherwise, we would have bp ⊂ c ⊂ b which means b | c and b | bp so by
uniqueness of factorization we would have either c = b or c = pb.

Therefore b = (x) + pb giving surjectivity.

Lemma 3.4.3. Let K be a number field and a ⊂ b ⊂ OK non-zero ideals. Then
a = b if and only if N(a) = N(b)

Proof. Clearly, if a = b they have the same norm. So lets check the other
direction.

First note that since a ⊂ b ⊂ OK , the tower law (which works for groups) gives
us that [OK : a] = [OK : b][b : a]. But [OK : a] = N(a) = N(b) = [OK : b]
therefore [b : a] = 1 giving the result.
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Proposition 3.4.4. Let K be a number field and a ⊂ OK an ideal. If N(a) is a
prime, then a is a prime ideal. Conversely, if p is a prime ideal, then N(p) = pf for
some prime number p and f ∈ Z>0.

Proof. If a is not prime then a = pb with p a prime ideal and b 6= (1). Then by
Proposition 3.4.23.4.2 we have

N(a) = N(p)N(b)

which means N(a) could not have been prime, which is a contradiction.
For the converse we note that since p is prime it is therefore maximal.

Therefore OK/p is a field, which we know is finite. Moreover, we know every
finite field has size pf for some prime p and natural number f , which gives the
result.

Proposition 3.4.5. Let K be a number field. Let α ∈ OK\0 and let (α) denote the
ideal generated by α. Then

|NK/Q(α)| = |OK/(α)|.

Proof. Let e1, . . . , en be an integral basis of OK , then clearly αe1, . . . , αen is an
integral basis of (α). On the other hand, since (α) ⊂ OK ∼= Zn we can make
sure to choose the ei such that there exist mi ∈ Z such that m1e1, . . . ,mnen is
an integral basis of (α). Alternatively, this follows from the structure theorem for
finitely generated abelian groups. Then

OK/(α) ∼= Z/m1Z× · · · × Z/mnZ

and therefore N((α)) =
∏
i |mi|.

Next we need to relate this number to NK/Q(α) in some way. For this, let us
compare the three bases for K over Q that we have written down: {e1, . . . , εn},
{m1e1, . . . ,mnen} and {αe1, . . . , αen}.

Now, lets see look at the diagram summarising the associated change of basis
matrices.

K K

K K

ei 7→αei

ei 7→ei

ei 7→miei

miei 7→αei

The top arrow corresponds to the action of Aα. The arrow on the left
corresponds to the identity matrix I . The arrow along the bottom corresponds
to a change of basis matrix with is diagonal which diagonal entries mi, lets call
it D. Lastly, whatever the matrix corresponding to the arrow going upwards on
the right is, it represents a change of basis matrix between two integral bases for
(α), therefore similarly to what we have seen before, it must correspond to an
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invertible matrix with integer coefficients, which we will denote by N . Note that
this also means, det(N) = ±1.

Now, from the diagram it is clear that going along the top of the diagram
is the same as first going down, then right and then up. This means this is a
commutative diagram and therefore we have Aα = NDI therefore

NK/Q(α) = det(Aα) = det(N) det(D) det(I) = ±det(D) =
∏
i

mi.

Taking absolute values now gives the result.

Example 3.4.6. Let p be a odd prime, ζp a p-th root of unity and λp = 1− ζp.
Let K = Q(ζp). Then from the proof of Theorem 2.3.22.3.2 we know NK/Q(λp) = p
and therefore N((λp)) = p which by the above means, (λp) must be a prime
ideal.

Corollary 3.4.7. Let K be a number field, a ⊂ OK an ideal and α ∈ a. Then
a = (α) if and only if |NK/Q(α)| = N(a).

Proof. Since α ∈ a we have (α) ⊂ a. Then by Lemma 3.4.33.4.3 and Proposition 3.4.53.4.5
gives the result.

Lemma 3.4.8. Let K be a number field and a ⊂ OK a non-zero ideal. Let
a = N(a). Then a ∈ a.

Proof. Recall that by Lagrange’s Theorem, every element in OK/a has order at
most a. Therefore, if we look at the element 1 + a ∈ OK/a we have a · (1 + a) =
0 + a therefore a ∈ a.

Remark 3.4.9. We’ve seen something similar in the proof of Proposition 3.2.43.2.4.

Corollary 3.4.10. Let K be a number field. Then there are only finitely many ideals
with a given norm.

Proof. If a is an ideal with N(a) = a then by Lemma 3.4.83.4.8 we have a ∈ a which
means a | (a). But by uniqueness of factorization, a only has finitely many factors,
which gives the result.

3.5 Splitting of prime ideals

We now want to understand how prime ideals change as we go up in field
extensions, by which we mean the following: In Z we know that the prime ideals
are all principal and generated by prime numbers, i.e, they are of the form (p)
for p a prime. Now, what happens when we extend our number field? Well if we
now go from (Q,Z) to (Q(

√
−5),Z[

√
−5]) then lets look at what happens to our

prime ideals. In Z[
√
−5], the ideal (2) is no longer prime, since we will see that

(2) = (2, 1 +
√
−5)2
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where now (2, 1 +
√
−5) is a prime ideal in Z[

√
−5]. (You actually have enough

to check this. You can compute its norm and see that it has norm 2)
Similarly, if we look at the ideal (3) in Z[

√
−5], we find that

(3) = (3, 1 +
√
−5)(3, 1−

√
−5)

where again each idea on the right is now prime.

Definition 3.5.1. Let K/F be a finite extension of number fields with rings of
integers OK and OF . If P is a non-zero prime ideal in OK and p is a non-zero
prime ideal in OF then we say P lies over p (or equivalently p lies under P), if
P | pOK . Here pOK denotes the ideal generated by p in OK .

Proposition 3.5.2. Let K/F be a finite extension of number fields with rings of
integers OK and OF . If P is a non-zero prime ideal in K and p is a non-zero prime
ideal in F then the following conditions are equivalent:

(1) P | pOK

(2) P ⊃ pOK

(3) P ⊃ p

(4) P ∩ OF = p

(5) P ∩ F = p.

Proof. Corollary 3.3.143.3.14 gives that (1) and (2) are equivalent. Since P is an ideal,
if it contains p it contains pOK , therefore (2) and (3) are equivalent. Since
P ⊂ OK it follows that (4) and (5) are equivalent.

So it remains to prove (3) and (4) are equivalent. It obvious that (4) =⇒ (3)
so we just need the reverse. Note that P ∩ OF contains p and is moreover an
ideal in OF . But now, since every prime ideal in a Dedekind domain is maximal,
p is also maximal and therefore we must have P ∩ OF = p or P ∩ OF = OF .
But if P ∩ OF = OF then 1 ∈ P meaning P = OK which contradicts it being a
prime ideal.

Example 3.5.3. If we take F = Q and K = Q(
√

3) then (2, 1 +
√

3) lies above
(2). To see this we just note that (2, 1 +

√
3) ∩ Z = (2).

Theorem 3.5.4. LetK/F be a finite extension of number fields with rings of integers
OK and OF . Then every non-zero prime ideal P ⊂ OK lies over a unique non-zero
prime ideal p ⊂ OF .

Conversely, every non-zero prime ideal p ⊂ OF lies under at least one non-zero
prime ideal P ⊂ OK .
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Proof. For the first part, we claim that P ∩ OF is a prime ideal in OF (this is
enough as from Proposition 3.5.23.5.2 (4) will give us uniqueness). For this, we first
note that since 1 6∈ P, then P ∩ OF wont be the whole ring. Moreover, by the
proof of Proposition 3.2.43.2.4 we see that P contains NK/F (a) ∈ Z for all a ∈ P.
Since the norm of a non-zero element is non-zero, and P is non-zero, we get that
P ∩ Z is non-zero and therefore so is P ∩ OF . So P ∩ OF is a proper ideal, so
we just need to prove it is prime. So if r, s ∈ OF with rs ∈ P ∩OF then rs ∈ P,
therefore either r ∈ P or s ∈ P since P is prime. From this the first part follows.

For the second part, it suffices to look check that pOK 6= OK , since in this
case, it will be divisible by some prime ideal, and by definition this prime ideal
would lie over p. So we are reduced to checking 1 6∈ pOK . By Lemma 3.3.43.3.4
we can find x ∈ F\OF such that xp ⊂ OF . Then xpOK ⊂ OFOK = OK . If
1 ∈ pOK then x ∈ OK , but then x is in OK ∩ F = OF and this an algebraic
integer, contradicting the fact that x ∈ F\OF .

Definition 3.5.5. Let K/F be a finite extension of number fields with rings of
integers OK and OF and let p be a non-zero prime ideal in OF . Then

pOK =

r∏
i=1

Pei
i .

We call the ei the ramification indices and if needed we will denote them by ePi|p.
Now, let P lie over p. Recall that kP := OK/P and kp := OF/p are both

finite fields, since P, p are both maximal ideals and by Proposition 3.2.43.2.4 we know
the quotient ring is always finite. These are called the residual fields attached
to P and p respectively. Moreover, kp is naturally a subfield of kP (convince
yourself of this). Therefore, kP is a finite extension of kp and [kP : kp] is called
the inertial degree or residue degree of P over p, which will be denoted fP|p.

Proposition 3.5.6. Let F ⊂ K ⊂ L be number fields and p ⊂ p ⊂ P be prime
ideals in OF ⊂ OK ⊂ OL. Then

eP|p = eP|pep|p

and
fP|p = fP|pfp|p

Proof. For the f ’s this follows easily from the Tower Law 1.3.191.3.19. For the e’s the
result is clear.

Theorem 3.5.7. Let K be a number field with [K : Q] = n and p a prime number.
If pi are the prime ideals in OK dividing pOK , then∑

i

epi|pfpi|p = n
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with notation as in Definition 3.5.53.5.5.

Proof. Let ei := epi|p and fi := fpi|p. By definition we have

pOK = pe11 pe22 . . . perr .

Now, lets take norms on both sides: By Proposition 3.4.53.4.5 we have N(pOK) =
|NK/Q(p)| = pn.

So we have
pn =

∏
i

N(pi)
ei .

So it remains to show that N(pi) = pfi . For this we note that OK/pi is a finite
extension of Fp := Z/pZ =: kp of degree [kpi/kp] = fi. Therefore OK/pi ∼= Ffip
(as a vector space) from which it follows that N(pi) = pfi .

Note that we have only defined this for primes p lying above a rational prime
p ∈ Z. But these things make sense in more generality for primes P lying above
a prime ideal p in OF for K/F a finite extension of number fields.

In this case one can again prove that∑
i

ePi|pfPi|p = [K : F ] (3.4)

but the proof is a bit more involved. But if we assume the following proposition
(which I wont prove)

Proposition 3.5.8. Let K,F be a number fields with [K : F ] = n. Let a be an
ideal in OF and let A = aOK , then

N(A) = N(a)n

Then 3.43.4 is easy to prove from this.

Exercise 3.5.9. Using Proposition 3.5.83.5.8 prove 3.43.4.

Theorem 3.5.10 (Dedekind–Kummer). Let K/F be an extension of number fields
and α ∈ OK a primitive element so that K ∼= F (α).

Let p ⊂ OF be a prime ideal and p the prime number such that (p) = p ∩ Z.
Assume that p does not divide the indexbb

[OK : OF [α]].

Let mα,F be the minimal polynomial of α over F and let

mα,F ∈ (OF/p)[x]

bNote that here I am thinking of OF [α] as a subgroup of OK and then [OK : OF [α]] denotes
the size of the quotient group OK/OF [α].
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be its reduction modulo p. Now, write mα,F as a product of powers of irreducible
polynomials (i.e factorize it)

mα,F (x) = m1(x)e1 . . .mr(x)er .

Next, let mi ∈ OF [x] be a polynomial whose reduction modulo p is mi and let

Pi = (p,mi(α)) = pOK + (mi(α)).

Then:

1. The ideals Pi are independent of choice of mi. (This is by construction)

2. The Pi are distinct prime ideals and they are precisely the prime ideals of OK
lying over p. Therefore

pOK = Pe1
1 . . .Per

r

3. fPi|p = deg(mi) and ei = ePi|p

Proof. The result will follow from the following three claims:

(�) Let fi = deg(mi). For each i, either Pi = OK or OK/Pi is a field of size
|OF/p|fi .

(÷) Pi + Pj = OK whenever i 6= j.

(x) pOK divides Pe1
1 . . .Per

r .

From this we get the result as follows: By relabelling the Pi we can assume
that P1, . . . ,Ps 6= OK and Ps+1, . . . ,Pr = OK .

Now, from (�) it follows that P1, . . . ,Ps are all prime ideals (since quoti-
enting out by them gives a field). Moreover, by construction they contain p, so
lie above p and fPi|p = fi (to see this just look at how the residue degrees are
defined).

Next (÷) tells us that P1, . . . ,Ps are all distinct and (x) becomes

pOK | Pe1
1 . . .Pes

s .

From this it follows that
pOK = Pd1

1 . . .Pds
s

with di ≤ ei. Now, using 3.43.4 we have

[K : F ] =
s∑
i=1

difi

but on the other hand

deg(mα,F ) = [K : F ] =
r∑
i=1

eifi.
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So comparing these gives r = s, di = ei for all i.
So lets prove these three claims.

Proof of�. Note that each mi is an irreducible polynomial in (OF/p)[x]. So if
we let E := OF/p (which is a field), then Mi := E[x]/mi is again a field. We
have a map

OF [x] −→Mi

given by first reducing modulo p and then modulo mi. This map is clearly
surjective and the kernel is given by the ideal in OF [x] generated by p and mi.
So we have an isomorphism

OF [x]/(p,mi) ∼−→Mi.

Alongside this, note that we have a ring homomorphism

φ : OF [x] −→ OK/Pi

given by evaluation at α (i.e x 7→ α) and reducing modulo Pi. By definition of
Pi its clear that (p,mi) is in the kernel. But from the above, we know (p,mi) is
a maximal ideal, so ker(φ) is either (p,mi) or OF [x].

Next, we claim that φ is surjective. To show this we need to show that
OK = OF [α] + Pi. It turns out that in fact something stronger is true, which
is that OK = OF [α] + (p)OK (note that pOK ⊂ Pi). To prove this, we need to
make use of the one thing we know, which is that p - [OK : OF [α]]. How do we
use this fact? notice that the indexcc of OF [α] + pOK in OK must divide both
of [OK : OF [α]] and [OK : pOK ]. But [OK : pOK ] is some power of p and by
assumption p - [OK : OF [α]], so these indexes are coprime and therefore

[OK : (OF [α] + pOK)] = 1 =⇒ OK = OF [α] + pOK .

Therefore since ker(φ) is either is either or OF [x], it follows that either
OK/Pi

∼−→ Mi (which would be if the kernel is (p,mi) ) or Pi = OK if the
kernel is OF [x].

Proof of ÷. By construction the mi are distinct irreducible polynomials in E[x].
Therefore for i 6= j we can find g, h such that mig + mjh = 1 (in E[x]). This
mean that we can find g, h ∈ OF [x] such that mig + mjh ≡ 1 (mod p). If we
now simply evaluate at x = α we see that

mi(α)g(α) +mj(α)h(α) ≡ 1 mod p

and therefore
1 ∈ (p,mi(α),mj(α)) = Pi + Pj

cBy index I mean the size the of the quotient.
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Proof ofx. Since Pi = (p,mi(α)) it follows that Pe1
1 . . .Per

r is contained in

(p,m1(α)e1 . . .mr(α)er).

But this means (by Corollary 3.3.143.3.14) thatPe1
1 . . .Per

r is divisible by (p,m1(α)e1 . . .mr(α)er).
But note that

m1(α)e1 . . .mr(α)er = mα(α) = 0.

Therefore
m1(α)e1 . . .mr(α)er ≡ 0 mod pOK

thus (p,m1(α)e1 . . .mr(α)er) = pOK which gives the result.

This theorem is really useful for us. It will make it really easy to understand
how prime ideals change as we extend our field. For clarity, lets just see what this
theorem says when our bottom field (F ) is simply Q.

Corollary 3.5.11. Let K be a number field of degree n over Q and let α ∈ OK be a
primitive element so that K ∼= Q(α).

Let p be a prime number not dividing [OK : Z[α]] and let

mα(x) = m1(x)e1 . . .mr(x)er

be the reduction modulo p of the minimal polynomial mα of α. Then in OK the ideal
(p) factorizes as

(p) =
r∏
i=1

peii

where pi = (p,mi(α)) and fpi|p = deg(mi) and ei = epi|p.

Definition 3.5.12. Let K be a number field and p a prime number. We say

1. p is ramified in K, if there exists a p|p such that ep|p > 1. Otherwise we
say p is unramified.

2. p is totally ramified if there is a p|p such that ep|p = [K : Q].

3. p is inert if p is unramified and there exists a unique prime p lying above p
(which will have fp|p = [K : Q]).

4. p is split if it is unramified and for some p|p we have fp|p = 1. If it is
unramified and for all p|p we we have fp|p = 1, we say p is totally split.
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Example 3.5.13. Going back to Z[
√
−5], we saw that the ideal (2) is no longer

prime, since we will see that

(2) = (2, 1 +
√
−5)2

where now (2, 1 +
√
−5) is a prime ideal in Z[

√
−5]. Therefore (2) is totally

ramified in Z[
√
−5].

Similarly, if we look at the ideal (3) in Z[
√
−5], we find that

(3) = (3, 1 +
√
−5)(3, 1−

√
−5)

where again each idea on the right is now prime. So (3) totally splits in Z[
√
−5].

Lastly, if we look at (11) we will see that this remains prime in Z[
√
−5] and

is therefore inert.

Lets now do some examples:

Example 3.5.14. Let K = Q(
√

6) (so here α =
√

6). From Theorem 2.1.112.1.11 we
have OK = Z[

√
6] and therefore [OK : Z[α]] = 1 so Theorem 3.5.103.5.10 works for

any prime number. Now, note that mα = x2 − 6.
Lets use this to find how the ideal 2OK factorizes in Z[

√
6]. From now on I

will just denote pOK by (p). First step is to reduce mα modulo 2. Which gives
mα(x) = x2 = m1(x)2 (if you cant see why we only have one mi on the right
hand side, just look back at the theorem and note that the mi are distinct by
construction).

Next, we need to find some m1(x) whose reduction modulo (2) agrees with
m1(x). For this lets just be lazy and take m1(x) = x (this might be a good point
to comeback to and try and convince yourself the the choice of m1(x) wont make
a difference to then end result, i.e. see what happens if we take m1(x) = x+ 2).
The theorem then says that

(2) = p2
2 := (2,

√
6)2.

This means (2) ramifies in OK .
Ok lets do some more examples. To speed things up here is a table of values

of mα(x) for some small x which is useful for figuring out how mα factorizes
modulo p.

x mα(x) = x2 − 6

0 −6

±1 −5

±2 −2

±3 3

±4 10

±5 19
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From this table we see that:

mα(x) = x2 (mod 3)

mα(x) = (x− 1)(x+ 1) (mod 5)

mα(x) = (x2 − 6) (mod 7)

mα(x) = (x2 − 6) (mod 11)

From this it follows that:

(3) = p2
3 := (3,

√
6)2

(5) = p5p
′
5 := (5,

√
6− 1)(5,

√
6 + 1)

(7) = p7 := (7)

(11) = p11 := (11)

So we see that (3) ramified in OK , (5) splits and (7), (11) are inert in OK .
BUT WAIT, THERE’S MORE (insert relevant meme): The theorem tells us

the norm of the ideals p. Specifically, the theorem says that fp|p = deg(mi) and
by Theorem 3.5.73.5.7 we saw N(p) = pfp|p . So, in this case we get

N(p2) = 2

N(p3) = 3

N(p5) = 51 and N(p′5) = 51

N(p7) = 72

N(p11) = 112

We can also use this factorize other ideals in OK .

1. Say a is an ideal, then we can first calculate N(a) (which if a is principal
we know how to do, but in general this might be hard) and factorize it.

2. For each prime number p appearing, we then factor (p) in OK as we did
above.

3. Note that Corollary 3.4.103.4.10 tells us that there are only finitely many prime
ideals of norm p, we can find them all by looking at the factorization of
(p).

4. Next we use Proposition 3.3.143.3.14, tells us that p|a if and only if the generators
of p are in a.
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Lets do this for a = (12 + 7
√

6). To find the norm of this ideal we use
Proposition 3.4.53.4.5 this gives

N(a) = |NK/Q(12 + 7
√

6)| = |122 − 6 · 72| = 150 = 2 · 3 · 52

From the above calculation we see that p2 is the only prime ideal of norm 2
and p3 is the only prime ideal of norm 3 and that we have two ideals of norm 5.
This immediately gives us that there are only 3 ideals of norm 150 and they are

p2p3p
2
5 p2p3p

′2
5 p2p3p5p

′
5

So we need to check with one of these is a. First we see that since p5p
′
5 = (5)

and 12 + 7
√

6 is not a multiple of 5, it follows it can’t be the one with a p5p
′
5

term. Now, note that 12 + 7
√

6 = 5 + 7(1 +
√

6) therefore its contained in p′5
and therefore

a = p2p3p
′2
5 .

Example 3.5.15. Lets do a cubic. Let K = Q(α) where α is a root of mα(x) =
x3 + 10x+ 1. This is irreducible since it is irreducible in F13 (just check it doesnt
have a root). By Corollary 2.2.262.2.26 we have that

∆({1, α, α2}) = −4027

which is a prime number, in particular it is square-free, so this is an integral basis
by Corollary 2.2.92.2.9. So OK = Z[α]. So we can freely apply Theorem 3.5.103.5.10.

Lets see how some prime split in K :
We have

mα(x) = (x+ 1)(x2 + x+ 1) mod 2,

therefore
(2) = p2p

′
2 = (2, α+ 1)(2, α2 + α+ 1).

Thus (2) is unramified, and the residue degrees are fp2|2 = 1 and fp′2|2 = 2.
Lets look at (29). Here we see that

mα(x) = (x+ 5)(x− 3)(x− 2) mod 29

meaning

(29) = p29p
′
29p
′′
29 = (29, α+ 5)(29, α− 3)(29, α− 2).

Thus (29) is also unramified and in particular it is totally split. So the residue
degrees are all 1.

Lastly, lets look at (4027). Here we see

mα(x) = (x+ 2215)2(x+ 3624) mod 4027
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therefore

(4027) = p2
4027p

′
4027 = (4027, α+ 2215)2(4027, α+ 3624).

Thus (4027) is ramified. ep4027|4027 = 2, ep′4027|4027 = 1 and the residue degrees
are all 1.

Proposition 3.5.16. Let K be a number field and α ∈ OK a primitive element with
mα Eisenstein at p. Then we have

(p) = p[K:Q]

with p = (p, α).

Proof. If α is Eisenstein at p then OKZ[α]
has no element of order p by Lemma 2.2.212.2.21

and therefore the index [OK : Z[α]] is coprime to p. So we can apply Theorem
3.5.103.5.10 which, since mα is Eisenstein at p, gives mα(x) = x[K:Q], from which the
result follows.

Lets see what this tells us for quadratic extensions:
Note that if n is a square-free integer, then in Q(

√
n) there are three pos-

sibilities for how primes decompose (this follows from Theorem 3.5.73.5.7). These
being

(p) =


p2, fp|p = 1

p, fp|p = 2

pp′, fp|p = fp′|p = 1

(3.5)

Theorem 3.5.17. Let n be a square-free integer,K := Q(
√
n) and p a prime number.

v If p | n then (p) = (p,
√
n)2.

¨ If n is odd then

(2) =


(2, 1 +

√
n)2, if n ≡ 3 (mod 4) (3.6)(

2,
1 +
√
n

2

)(
2,

1−
√
n

2

)
if n ≡ 1 (mod 8) (3.7)

(2) if n ≡ 5 (mod 8) (3.8)

¤ If p is odd and p - n, then

(p) =

{
(p, a+

√
n)(p, a−

√
n) if n ≡ a2 (mod p) (3.9)

(p) if
(
n
p

)
= −1 (3.10)

Moreover, in (3.73.7) and (3.93.9) the ideals appearing are distinct.
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Proof. We will defer the proof that the ideals in (3.73.7) and (3.93.9) are distinct to
Corollary 3.6.123.6.12.

For v, note that (p,
√
n)2 = (p2, p

√
n, n), which if p | n is contained in (p).

Conversely, (p2, p
√
n, n) contains the GCD of p2 and n, which is p, so we get

(p) ⊂ (p,
√
n)2, therefore we get the equality we are after.

We will split the rest of proof into two cases, which together give the result.
The first is if n ≡ 2, 3 (mod 4) and the second if n ≡ 1 (mod 4).

From Theorem 2.1.112.1.11 we know that if n ≡ 2, 3 (mod 4) then OK = Z[
√
n].

In this case Theorem 3.5.103.5.10 (using α =
√
n and mα = x2 − n) gives ¤and (3.63.6)

(which is the only one that applies in this case).
Now, we look at the case n ≡ 1 (mod 4). In this case, Theorem 2.1.112.1.11 tells us

that OK = Z[ 1+
√
n

2
]. Note that this means the index [OK : Z[

√
n]] = 2 but p is

odd, so it doesn’t divide this index. So Theorem 3.5.103.5.10 gives ¤.
So, we are left with (3.73.7) and (3.83.8) of ¨. Here we cannot apply Theorem

3.5.103.5.10. So lets assume n ≡ 1 (mod 8), then(
2,

1 +
√
n

2

)(
2,

1−
√
n

2

)
=

(
4, 1−

√
n, 1 +

√
n,

1− n
4

)
.

Now, since each of these generators is divisible by 2, we get that(
2,

1 +
√
n

2

)(
2,

1−
√
n

2

)
⊂ (2).

Conversely,
(
4, 1−

√
n, 1 +

√
n, 1−n

4

)
contains the gcd(4, 1 −

√
n) = 2 which

gives the reverse inclusion.
Finally, lets assume n ≡ 5 (mod 8). In this case lets consider OK/(2). By

Theorem 3.5.73.5.7 its enough to show that OK/(2) is a field not isomorphic to Z/2Z
(since this means the residue degree is 2 and therefore, since we are in a quadratic
field, it must be inert). To show they are not isomorphic, consider

mα(x) = x2 − x+
1− n

4
.

By construction, this has a root in OK and therefore has a root in OK/(2) (just
reduce your root modulo 2). On the other hand, since n ≡ 5 (mod 8) we have
mα(x) = x2 + x+ 1 (mod 2) which by Exercise 1.2.191.2.19 we know is irreducible in
Z/2Z and therefore has no root in Z/2Z. So OK/(2) is an extension of F2 by a
root of x2 + x+ 1, so its a field, which also goes by the name F4.

Remark 3.5.18. Using this theorem together with the quadratic reciprocity law,
which says (

p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4
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(with p, q primes) we can easily find how primes decompose in quadratic exten-
sions.

3.6 Embeddings and prime ideals

Lets now look at how embeddings interact with prime ideals. We begin with a
definition you may have seen in your Galois theory course.

Definition 3.6.1. Let K/F be an extension of number fields. We say K is normal
over F every embedding σ : K → C which fixes F has image again in K . In
other words the embedding σ is an automorphism σ : K → K which fixes the
elements of F .

In particular, if K = F (α) and K contains all of the conjugates of α, then K
is normal.

Example 3.6.2. Let K = Q(
√

2) and F = Q. Then since each embedding that
fixes Q sends

√
2 to one of ±

√
2 ∈ K , we see that K is normal.

Non-example 3.6.3. If K = Q( 3
√

2) then this is not normal, since one of the
embeddings will send 3

√
2 to ζ3

3
√

2 (where ζ3 is a non-trivial cube root of unity)
which is a complex number and therefore not contained in K .

Proposition 3.6.4. Let K/F be a finite extension of number fields. Then there is a
finite extension L/K such that L/F is normal as is L/K .

Proof. If K = F (α), then just set L = F (α1, α2, . . . , αn) where αi are the
conjugates of α.

Notation 3.6.5. If K/F is a normal extension, a ⊂ OK is an ideal and σ is an
embedding of K fixing F (which in particular is an automorphism). Then we let
σ(a) be the ideal in K generated by the images of the elements of a under σ.

Furthermore, we let Gal(K/F ) denote the set of embeddings of K which fix
F . Since K/F is normal, this can be made into a group by using composition as
our group operation, i.e. σ1, σ2 ∈ Gal(K/F ) we let (σ1σ2)(x) = σ1(σ2(x)). By
Proposition 1.5.81.5.8 there are only [K : F ] such embeddings, so this group has size
[K : F ] and is known as the Galois group.

Theorem 3.6.6. Let K/F be a normal extension of number fields. Let p be a prime
ideal in OF and P,P′ be two prime ideals of OK above p. Then σ(P) is again a
prime ideal lying over p, moreover there is some element σ ∈ Gal(K/F ), such that
σ(P) = P′.

Proof. Let G := Gal(K/F ). Note that since P is a prime ideal OK/P is a
integral domain. Now, apply σ to this quotient. Since σ(OK) = OK (as K/F is
normal) we get

OK/P ∼= OK/σ(P)
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and therefore σ(P) is again a prime ideal. Moreover, since P ∩ OF = p (this is
what lying above means) and σ fixes F we see that σ(P) ∩ OF = p.

Now, suppose that σ(P) 6= P′ for all σ ∈ G. Then we can use the Chinese
remainder theorem 3.3.213.3.21 to find some α ∈ OK such that

α ≡ 0 mod P′

and
α ≡ 1 mod σ(P)

for all σ ∈ G.
Now,

NK/F (α) =
∏
σ∈G

σ(α) ∈ P′ ∩ OF = p.

On the other hand α 6∈ σ(P) by construction, and therefore σ−1(α) 6∈ P. But
we have

NK/F (α) =
∏
σ∈G

σ(α) =
∏

σ−1∈G

σ−1(α).

This gives us a contradiction, since we have just seen that the left hand side is in
p. But the right hand is not contained in P since σ−1(α) 6∈ P, but p ⊂ P.

Corollary 3.6.7. Let K/F be a normal extension of number fields and let P and
P′ be two primes lying above the prime p. Then

eP|p = eP′|p fP|p = eP′|p

Proof. Lets start by factoring p in OK . We have

pOK =
∏
i

P
ePi|p
i .

Now, by Theorem 3.6.63.6.6, if we apply σ to this equation we get

pOK = σ(p)OK =
∏
i

σ(Pi)
ePi|p

but then by the fact that for any i, j we can find σ such that Pi = σ(Pj) and
uniqueness of factorization, we get that

ePi|p = ePj |p

which gives the first part of the result.
For the second part, we note that by the proof of Theorem 3.6.63.6.6 we have seen

that
OK/P =: kP ∼= kσ(P) := OK/σ(P)
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from which the result follows.

Corollary 3.6.8. Let n be an integer and ζn an n-th root of unity. Let K = Q(ζn)
and p a prime number. Then

(p) = (p1p2 · · · pr)e

where pi are the primes of OK over p, which moreover all have the same inertial
degree.

Proof. This follows from Corollary 3.6.73.6.7 by noting that K is a normal extension.

Next we have a theorem that tells us about which primes will ramify in an
extension.

Theorem 3.6.9. Let p be a prime number and K a number field. If p is ramified in
OK then p | ∆(OK).

Proof. Let p be a prime ideal in OK over p such that ep|p > 1. Then we can write
(p) = pa where a is an ideal divisible by all prime ideals in OK which are above
p.

Now, let α1, . . . , αn be a integral basis for OK . Since a properly contains (p)
we can find some α ∈ a\(p). Then writing

α = α1m1 + · · ·+ αnmn

with mi ∈ Z we see that since α 6∈ (p), one of the mi must not be divisible by p.
So after relabelling, we can assume p - m1. Now, similar to Proposition 2.2.42.2.4 we
have that

∆(α, α2, . . . , αn) = m2
1∆(α1, . . . , αn) = m2

1∆(OK).

Since p - m1 its enough to show that p | ∆(α, α2, . . . , αn).
Now, let σ1, . . . , σn denote the embeddings of K into C. Let L be a finite

extension of K such that L/Q is normal (which we can do by Proposition 3.6.43.6.4).
Let G := Gal(L/Q). Then the elements of G are just the embeddings of L
extending the embeddings of K (if you dont remember what this means go to
Definition 1.5.51.5.5)

Since α is contained in a, its contained in every prime ideal in OK over p.
It follows that α is also in every prime ideal P in OL containing p, since each
such prime contains p and P ∩ OK = p is again a prime ideal which contains p,
hence p lies over p and therefore contains α. Fix P a prime ideal of OL over p.
Then we claim that for any σ ∈ G, σ(α) ∈ P. To see this note that σ−1(P) is
again a prime ideal in OL over p and thus contains α. In particular, σi(α) ∈ P
for all i. Therefore, by Proposition 2.2.162.2.16 ∆(α, α2, . . . , αn) ∈ P. But since the
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discriminant is an integer, we have ∆(α, α2, . . . , αn) ∈ P∩Z = pZ and therefore
p divides the discriminant.

Corollary 3.6.10. Let K be a number field with K = Q(α) for α a primitive
element and let f ∈ Z[x] be any monic polynomial such that f(α) = 0. If p is a
prime number such that p - NK/Q(f ′(α)) then p is unramified.

Proof. Since every monic polynomial with α as a root is divisible by mα (see
Proposition 1.3.101.3.10), its enough to check this for mα. But then Proposition 2.2.192.2.19
gives the result.

Corollary 3.6.11. There are only finitely many primes of Z which ramify in a number
field K .

Corollary 3.6.12. In (3.73.7) and (3.93.9) of Theorem 3.5.173.5.17 the ideals appearing are
distinct.

Proof. Using Exercise 2.2.282.2.28 and Theorem 3.6.93.6.9 we see that since in each case
the prime does not divide the discriminant, the prime cannot be ramified and
therefore the ideals are distinct.

Going back to the cyclotomic example, one can determine the ramification
and the inertial degree completely in this case.

Theorem 3.6.13 (Decomposition theorem for cyclotomic fields). Let n be a positive
integer and ζn an n-th root of unity. Let K = Q(ζn) and p a prime number. Write
n = pkm with p - m and set e = ϕ(pk) (where ϕ is Euler’s Totient function). Lastly,
let f be the (multiplicative) order of p modulo m.

Then
(p) = (p1p2 · · · pr)e

(so e = epi|p) and moreover f = fpi|p.

Proof. We start by letting α = ζm and β = ζp
k
. So α is a pk-th root of unity and

β is a m-th root of unity. We will prove the theorem by seeing how (p) factorizes
in Q(α) and in Q(β) and then combining the result.

Lemma 3.6.14. With the above notation. In Q(α) we have

(p) = (1− α)ϕ(pk)

with (1− α) a prime ideal.

Proof. First note that [Q(α) : Q] = ϕ(pk) since this is the degree of the pk

cyclotomic polynomial (See Lemma 2.3.12.3.1).
Next, from Exercise 2.3.62.3.6 we have p = u(1 − α)ϕ(pk), this tells us that (as

ideals in Z[α])

(p) = (1− α)ϕ(pk).
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Theorem 3.5.73.5.7 then gives the result.

Lemma 3.6.15. In Q(β), p is unramified and for each p over p, we have fp|p = f .

Proof. Using Corollary 3.6.103.6.10 with f(x) = xm − 1, we need to check if p divides

m[Q(β):Q]NQ(β)/Q(βm−1).

But p - m and β is a unit, so its norm is {±1} therefore p is unramified.
So in Z[β] we have

(p) = p1 . . . ps.

Moreover, since Q(β)/Q is normal we know that fpi|p = fpj |p. So let p := p1. Its
enough to check that fp|p = f (where f is as above- the multiplicative order of p
modulo m).

Let Fp := Z[β]/p. First, recall that fp|p = [Fp : Fp]. So fp|p = h for some h.
We want to show that h = f . We will do this in two steps, by first showing h ≥ f
and then h ≤ f .

(h ≥ f ): Let β denote the image of β in Fp. We will first show that β has

order m in Fp. Assume for contradiction this is not the case, then β
m/l ≡ 1

(mod p) (i.e. p | (βm/l − 1)) for some prime factor l of m. Now, βm/l is an l-th
root of unity. Then, by Exercise 2.3.62.3.6 we see that βm/l − 1 divides l and l is a
factor of m. Thus p | m. This gives a contradiction as p | p and gcd(m, p) = 1.

So β has order m in Fp. By Lagrange’s theorem this means m | N(p) − 1
and note that since p is a prime ideal over p, we have N(p) = ph. Thus ph ≡ 1
(mod m). But the order of p modulo m is f , so we have h ≥ f .

(h ≤ f ): Since pf ≡ 1 (mod m) it follows that βp
f

= β. Now, note that

(x+ y)p
f

≡ xp
f

+ yp
f

mod pZ[β].

This means that for all γ ∈ Z[β] we have

γp
f

≡ γ mod pZ[β]

(also using FLT). Now since (p) ⊂ p we see that

γp
f

≡ γ (mod p).

Therefore every non-zero element of Fp is a root of xp
f − x. Now, since we are

in a field, any polynomial of degree d has at most d roots. This polynomial has
ph roots (as this is the size of Fp) therefore ph ≤ pf =⇒ h ≤ f . This gives the
result.

Lets now put these two lemmas together and finish proving the theorem.
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Lemma 3.6.143.6.14 and Theorem 3.5.73.5.7 tells us that

e(1−α)|p · f(1−α)|p = e · 1 = [Q(α) : Q] = ϕ(pk)

Similarly, Lemma 3.6.153.6.15 gives

s · ep|p · fp|p = s · 1 · f = [Q(β) : Q] = ϕ(m)

Now, if Pi denote the prime ideals of Z[ζn] over p, then we know that∑
i

ePi|pfPi|p = [Q(ζn) : Q] = ϕ(n) = ϕ(pk)ϕ(m)

Lastly, using Proposition 3.5.63.5.6 together with

[Q(ζn) : Q(α)][Q(α) : Q] = [Q(ζn) : Q] = [Q(ζn) : Q(β)][Q(β) : Q]

gives
s · e · f = [Q(ζn) : Q]

from which the result follows.

This theorem is sometimes called the cyclotomic reciprocity law, since it
allows us to quickly find out how primes factor in cyclotomic fields, just like
quadratic reciprocity is used for quadratic fields. For general number fields, we
know of no such simple description.

Example 3.6.16. Lets use this theorem to see how primes factorize in Q(ζ5).

p mod 5 Order of p mod m Factorization of (p) Norms

0 - (p) = p4 N(p) = p

1 1 (p) = p1p2p3p4 N(pi) = p

2 4 (p) N((p)) = p4

3 4 (p) N((p)) = p4

4 2 (p) = p1p2 N(pi) = p2

We can use this to say things about how primes factor in extensions of Q(ζ5).
For example, in Q(ζ55) we see that

(11) = (p1p2p3p4)10

with fpi|p = 1.

Exercise 3.6.17. Describe the factorization of the following ideals into prime
ideals in Q(ζ55):

(13) (14) (5)
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Exercise 3.6.18. Let ζ7 be a 7-th root of unity and K = Q(ζ7). Complete
the following table describing the decomposition of ideals (p) (with p a prime
number) in OK .

p mod 7 Order of p mod m Factorization of (p) Norms

0

1

2

3

4

5

6
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Chapter 4

The ideal class group

Recall that in a number field K , a principal fractional ideal is a fractional ideal
of the form (x) = {xy|y ∈ OK} for x ∈ K . For example, principal ideals are
principal fractional ideals. Note that furthermore, if (x) and (y) are two principal
fractional ideals, then (x)(y) = (xy) is also a fractional ideal and moreover,
(x)(x−1) = OK . Thus the set of principal fractional ideals forms a subgroup of
JK (the group of fractional ideal as defined in Proposition 3.3.113.3.11). Let PK denote
the subgroup of principal fractional ideals.

Definition 4.0.1. The class group of K is defined to be quotient group

ClK =
JK
PK

.

Its elements are called ideal classes. If a is a fractional ideal, we let [a] denote its
class in ClK . We let hK denote the size of ClK (which we will see below is finite),
this is called the class number of K .

Remark. Note that in the class group, the identity element is given by the class
of principal fractional ideals, which we denote by [1] or [(1)].

Furthermore, note that if a and b are fractional ideals then

[a] = [b]

means that there is some principal fractional ideal (α) such that a = (α)b. So as
a SET [a] = {(x)a | x ∈ K}.

Note that, OK is a PID if and only if ClK is trivial. Moreover, since a
Dedekind domain is a PID if and only if its a UFD, this means that OK is a UFD
if and only if ClK is trivial. So ClK can be thought of measuring how far OK is
from being a UFD.

Theorem 4.0.2. Let K be a number field. Then ClK is finite.
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To prove this theorem we will make use of the following result, which we will
prove later.

Theorem 4.0.3. Let K be a number field with r1 real embeddings and r2 conjugate
pairs of complex embeddings. Let [K : Q] = n and let a be an ideal of OK . Then
there is an element a ∈ a such that

|NK/Q(a)| ≤ n!

nn

(
4

π

)r2
|∆(OK)|1/2N(a)

Definition 4.0.4. The quantity n!
nn

(
4
π

)r2 |∆(OK)|1/2 is known as the Minkowski
bound and we will denote it by MK .

Now, we have:

Proposition 4.0.5. Let K be a number field and let C be an ideal class in ClK .
Then C contains an ideal a in OK such that

N(a) ≤MK .

Proof. Consider the class C−1. This has a representative which is an ideal b of
OK . By Theorem 4.0.34.0.3 there is an x ∈ b such that |NK/Q(x)| ≤MKN(b).

Set a = b−1(x). Then this is in the same class as C since its a multiple of b−1

by a principal ideal (x). Moreover, since x ∈ b it follows that b−1(x) ⊂ OK (recall
that b−1 = {y ∈ K|yb ⊂ OK} ), so a is a proper ideal. Now by construction

N(a) =
|NK/Q(x)|
N(b)

≤MK

which gives the result.

Proof of Theorem 4.0.24.0.2. By Proposition 4.0.54.0.5 each ideal class C in ClK must
contain an ideal of norm at most MK . Now Corollary 3.4.103.4.10 implies there are
only finitely many such ideals. So there are only finitely many ideal classes.

4.1 Computing class groups

The proof of Theorem 4.0.34.0.3 will require some work, so lets first convince ourselves
that this theorem is worth all the work. In particular, lets see how we can use it
to compute some class groups

Example 4.1.1. Let i =
√
−1. Lets look at K = Q(i). Using Proposition 2.2.192.2.19

we see that ∆(OK) = −4. Moreover, K has no real embeddings, so r1 = 0 and
r2 = 1. Putting this together we get

MK =
2!

22

(
4

π

)√
4 =

4

π
u 1.273.
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Theorem 4.0.34.0.3 tells us that each ideal class contains an ideal of norm ≤ 1. But
the only ideal of norm 1 is the trivial ideal. So ClK is trivial. If follows that
OK = Z[i] is a PID.

Exercise 4.1.2. Show that if d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}
then Q(

√
d) has trivial class group and is thus a PID.

Example 4.1.3. Let K = Q(
√
−5). From Theorem 2.1.112.1.11 we know that OK =

Z[
√
−5]. Here again we have r1 = 0, r2 = 1 and ∆(OK) = −20. Therefore

MK =
2!

22

(
4

π

)√
20 =

√
80π < 3

This means every class contains an ideal of norm 1 or 2. We know the trivial
ideal has norm 1, so lets look at what ideal has norm 2. As we saw in the proof
of Corollary 3.4.103.4.10, its enough to look at what prime ideals divide 2. By Theorem
3.5.173.5.17 we have

(2) = (2, 1 +
√
−5)2

and therefore p2 := (2, 1 +
√
−5) is the unique ideal of norm 2.

So, this means the class group ClK has either 1 or 2 elements, depending
of whether or not these two ideals are in the same class, i.e., if [1] = [p2]. In
other words, is p2 a principal ideal (since principal ideals are the things which [1]
consists of). If it where principal, then Proposition 3.4.53.4.5 would mean that there is
some element in OK of norm ±2. Now

NK/Q(x+ y
√
−5) = x2 + 5y2

and its easy to see that this is never equal to ±2. So p2 is not principal and
therefore

ClK = {[1], [p2]}

so ClK is cyclic of order 2.

Example 4.1.4. Let K = Q(
√
−31). In this case by Theorem 2.1.112.1.11 we have

OK = Z[α] where α = 1+
√
−31

2
, n = [K : Q] = 2 and r1 = 0, r2 = 1. Lastly,

Exercise 2.2.282.2.28 gives ∆(OK) = −31. This means MK = 2
π

√
31 < 4.

So we need to find the ideals of norm less than 4. Using Theorem 3.5.173.5.17 gives

(2) = p2p
′
2 := (2,

1 +
√
−31

2
)(2,

1−
√
−31

2
)

with p2 6= p′2, both of which have norm 2. Moreover, we see that (3) is inert in
K , so has norm 9.

So the ideals of norm < 4 are (1), p2, p
′
2. We know p2 6= p′2, but this does

NOT mean we have [p2] 6= [p′2]. We need to see whether or not this is the case.
We know that p2p

′
2 = (2) which means we have [p2][p′2] = [(2)] = [1] so we have

[p2] = [p′2]−1. Therefore if we had [p2] = [p′2] this would mean that [p2]2 = [1]
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which means that p2 would have to be principal. Can this happen? Assume this
is the case, then we have p2

2 = (β) for some β ∈ OK (its in OK and not K since
p2 is a ideal in OK not a fractional ideal). Now, we know that N(p2) = 2 (this
follows from Corollary 3.5.113.5.11). This would mean β has norm 4. Note that the
norm of an arbitrary element in OK is

NK/Q(x+ yα) = x2 + xy + 8y2 x, y ∈ Z.

Therefore we need to check if this can be equal to 4. Clearly this can happen,
and moreover it can only happen if x = ±2 and y = 0. This would mean that
we have β = 2 and therefore

p2
2 = (2)

but we know that
(2) = p2p

′
2

therefore, by uniqueness of factorization and the fact that p2 6= p′2 we see that p2
2

cant be principal and therefore [p2] 6= [p′2].
It remains to check if [p2] = [1] or [p′2] = [1]. Similar to what we did above,

we now need to see if there is some element of norm ±2.
So the question is, can we find x, y which make x2 + xy + 8y2 this equal to

2. The first thing to note is that NK/Q(x + yα) ≥ 7y2, (to see this, note that
x2 + xy + y2 ≥ 0) so we are going to need y = 0. This means we would need
x2 = 2 which cant happen, therefore [p2] 6= [1] 6= [p′2]. Thus we have

ClK = {[1], [p2], [p′2]}

so its cyclic of order 3. From this we can deduce that [p2
2] = [p′2] and [p3

2] = [1]
(i.e. p3

2 is principal). Lets finish off by writing down the multiplication table for
the group:

[1] [p2] [p2
2]

[1] [1] [p2] [p2
2]

[p2] [p2] [p2
2] [1]

[p2
2] [p2

2] [1] [p2]

Example 4.1.5. Lets look at K = Q( 3
√

7) and let α = 3
√

7. The minimal
polynomial is clearly x3− 7 which has discriminant −1323 = −33 · 72. Next, lets
check that OK = Z[ 3

√
7]. For this we need to check if any of

x2α
2 + x1α+ x0

3
or

y2α
2 + y1α+ y0

7

can be algebraic integers for 0 ≤ xi ≤ 2, 0 ≤ yi ≤ 6. Since the minimal
polynomial is clearly Eisenstein at 7 we know from Lemma 2.2.212.2.21 that we only
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need to worry about 3. Here is a trick: note that

(x+ 7)3 − 7

is Eisenstein at 3 and at 7 so if β is one of its roots, then Z[β] = OK′ where
K ′ = Q(β), but Q(α) = Q(β) and Z[α] = Z[β]. Therefore OK = Z[ 3

√
7].

Knowing this means we can freely use Theorem 3.5.103.5.10. Now, lets calculate
the Minkowski bound. In this case n = 3, ∆(OK) = −1323, and r1 = r2 = 1.
Putting this together we get

MK =
3!

33

(
4

π

)√
1323 =

56
√

3

3π
u 10.3

So we need to find all ideals of norm at most 10. So lets factor the ideals
given by 2, 3, 5, 7 using Theorem 3.5.103.5.10.

• x3 − 7 ≡ (x− 1)(x2 + x+ 1) mod 2

• x3 − 7 ≡ (x− 1)3 mod 3

• x3 − 7 ≡ (x− 3)(x2 + 3x− 1) mod 5

• x3 − 7 ≡ x3 mod 7

From this we deduce

• (2) = p2p
′
2 = (2, α− 1)(2, α2 + α+ 1)

• (3) = p3
3 = (3, α− 1)3

• (5) = p5p
′
5 = (5, α− 3)(5, α2 + 3α− 1)

• (7) = p3
7 = (7, α)3 = (α)3

By Theorem 3.5.73.5.7 we know that N(pi) = pfpi|p so if we calculate the residue
degrees, we will know the norms of these ideals. But again Theorem 3.5.103.5.10 tells
us that this is exactly the degrees of the polynomials appearing on the right hand
side of each factorization modulo p. So combining this we have:

• N(p2) = 2 and N(p′2) = 4

• N(p3) = 3

• N(p5) = 5 and N(p′5) = 25

• N(p7) = 7
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So by combining these ideals we can construct any ideal of norm at most 10.
The next question is are these ideals distinct in ClK? Lets see if any of them are
principal:

Clearly, (7) = (α)3 is principal so this gives the trivial class in the class group.
Note that since (2) = p2p

′
2 we have [p2]−1 = [p′2].

So lets look at the other ideals.
Note that

NK/Q(x+ yα+ zα2) = x3 + 7y3 + 49z3 − 21xyz.

So, do we have elements of norm 2, 3 or 5? We’ll from the above we see that the
norm of an element must be a cube modulo 7. But the only cubes modulo 7 are
±1. So there are no elements of norm 2, 3, 5. So these ideals are not principal.
So ClK is generated by p2, p3, p5.

The next question is, do these ideals give distinct classes in ClK? First note
that p3

3 = (3) therefore [p3] has order 3 in ClK (since we already know its not
trivial). Note that NK/Q(2 + 3

√
7) = 15 and NK/Q(−1 + 3

√
7) = 6.

Therefore, since we only have one prime ideal of norm 2, 3 and 5 we must
have

(2 +
3
√

7) = p3p5 (−1 +
3
√

7) = p3p2

thus [p5][p3] = [1] and [p2][p3] = [1] giving [p5] = [p3]−1 = [p2]. Thus ClK is
generated by [p3] and is therefore cyclic of order 3. The multiplication table is
then

[1] [p3] [p2
3]

[1] [1] [p3] [p2
3]

[p3] [p3] [p2
3] [1]

[p2
3] [p2

3] [1] [p3]

Roughly, the steps for computing a class group of a number field K are as as
follows:

Algorithm 4.1.6. 1. Find the ring of integersOK and the discriminant ∆(OK)
(as defined in Definition 2.2.142.2.14 ). As we have seen in the problem sheet, in
many cases (but not all) we can calculate the discriminant using Theorem
2.2.252.2.25.

2. Find how many real r1 and complex conjugate r2 embeddings our number
field K has. To do this, you need to write down the embeddings (all [K : Q]
of them) and see how many of them are real or complex. How do you do
this quickly? If K = Q(α) then look at the conjugates of α. With this r1

will be the number of conjugates of α that are real numbers and r2 will be
half the number conjugates that are complex.
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3. Compute the Minkowski bound

MK =
n!

nn

(
4

π

)r2
|∆(OK)|1/2

where n = [K : Q].

4. Find all ideals of norm ≤ bMKc. To do this, look at all the primes p less
than bMKc and factor the ideal (p) in OK using Corollary 3.5.113.5.11, or if
we are in a quadratic field, use Theorem 3.5.173.5.17 which makes things really
quick.

5. After doing this you will have a list of prime ideals pi all with norm
≤ bMKc. The next step is to see if any of them are trivial in the class
group. This means, we need to check if [pi] = [1], in other words is pi
principal?aa How does one do this? Well if pi was principal, it would be
generated by an element β such that |NK/Q(β)| = N((β)) = N(pi). Now
check if this gives a contradiction by looking at the possibilities for the
norm of β.

6. After this we now have a possibly smaller list of prime ideals, all of which
we know are not principal. The next question is to check if they are distinct
from one another. In other words, if [p] = [q]. In general this might be
difficult, but in the examples above, we have seen some tricks how to do
this.

7. Once this is all done, we have our final set of generators, and by this point
we know the size of the group and it should be easy to write down the
multiplication table for the class group.

aWarning: Just because Corollary 3.5.113.5.11 says pi = (p, something) doesn’t mean this ideal can’t
be principal.
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Chapter 5

Solving Diophantine equations

Now, one of the big problems we have is that in general OK isn’t a unique
factorization domain, but in the cases when it is, we can use this to solve
Diophantine equations. For example, consider

x3 = y2 + 2.

Lets try and find its integer solutions, without using any of the machinery we
have developed. This will serve as an example going forwards.

To do this, lets factorize this equation in the ring Z[
√
−2] which is a UFD.

We then get
x3 = (y +

√
−2)(y −

√
−2).

Next, we see that the factors on the right hand side must be coprime: any
common factor would be a factor of 2

√
−2, meaning that x is even, so x3 is

divisible by 8. But y2 + 2 is never a multiple of 4 so this cannot happen. So, up
to a unit we have

y +
√
−2 = ±β3,

since −1 is a cube, wlog we take the + sign. If we let β = u+ v
√
−2 then

y +
√
−2 = u3 + 3u2v

√
−2− 6uv2 − 2v3

√
−2.

Now, lets equate coefficients, to get

y = u3 − 6uv2 1 = 3u2v − 2v3.

This implies that v|1, so v = ±1, which in turn means

y = u3 − 6u 1 = v(3u2 − 2).

Again the second equation implies u = ±1 and v = 1, which we can use to see
that y = ±5. Therefore the solutions are (x, y) = (3, 5) or (3,−5).

In order to go further, lets recall the following results form the problem sheets:
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Lemma 5.0.1. Let K be a number field and α, β ∈ OK . If (α) = (β) then there is
u ∈ O×K such that α = uβ.

Lemma 5.0.2. Let R be a Dedekind domain and a, b, c ideals such that

ab = c3

and suppose a, b are coprime. Then there exist ideals e, d such that

a = e3 b = d3 ed = c

Using this we can prove the following:

Example 5.0.3. Lets find all the integral solutions to x3 = y2 + 74 assuming
that hK = 10 where K = Q(

√
−74). The trick here is to factor this expression

in OK = Z[
√
−74], but before that, note the following:

Assume x, y ∈ Z are solutions. First thing to note is that y cannot be even,
since this would mean x is even. But then x3 − y2 ≡ 0 (mod 4) but 4 - 74. So
x, y must be odd. Similarly, we see that x, y must be coprime, since if p divides
both then p2 divided x3 − y2 = 74 but 74 is square-free.

Now lets look at the ideals. We have

(x)3 = (y −
√
−74)(y +

√
−74)

as ideals. Now, are the two ideals on the right hand side coprime?
If p divided them both, we would have

y −
√
−74 ≡ 0 mod p y +

√
−74 ≡ 0 mod p

and therefore p divides their sum, so p|(2y). Looking at the other side of the
equation, we see that p|(x). We know x is odd, so p cannot divide (2) (if it
did, then we would have (x) = p2a where a is some ideal and p2

2 = (2) (as can
be seen from Theorem 3.5.113.5.11), but this means N(p2) = 2 which would mean
N((x)) = |NK/Q(x)| = x2 is even, which can’t happen as x is odd). So we have
p | (y) and p|(x) but we know x, y are coprime (as integers, which means their
ideals are also coprime). Therefore we cannot have a p dividing both factors on
the right, so they are coprime.

Now, using Lemma 5.0.25.0.2 we must have (y−
√
−74) = a3 and (y+

√
−74) =

b3 with ab = (x). Note this means [a3] = [1] = [b3]. But note the class group has
size 10 so we cant have ideal classes of order 3. Therefore a, b are principal. So
let a = (a+ b

√
−74).

Then we have
(y −

√
−74) = (a+ b

√
−74)3.

Using Lemma 5.0.15.0.1 and Exercise 3.1.53.1.5 we see that up to ±1 we have

y −
√
−74 = a3 + 3a2b

√
−74− 3 · 74b2a− b374

√
−74.
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Equating each side we have

y = a3 − 3b2a74 3a2b− b374 = −1.

The second equation implies b | −1 and therefore b = ±1. This then gives
a = ±5. Substituting, it then follows that y = ±985 and x = 99 are the only
solutions.

Example 5.0.4. Lets do another example. Lets show that x3 = y2 + 5 has no
integral solutions. We saw in Example 4.1.34.1.3 that the class group in this case has
size 2.

Now, as we did before, lets start by assuming x, y are integer solutions to
this equation. If x was even then y2 + 5 ≡ 0 mod 4 which would make −1 a
square modulo 4 which can’t happen, so x cannot be even. Similarly, x, y must
be coprime since if p divided both of them, p2|(x3 − y2) meaning p2 | 5 which is
a contradiction.

Ok, with this done, lets now factor this in OK as ideals where K = Q(
√
−5).

We have
(x)3 = (y −

√
−5)(y +

√
−5).

Next, lets see if the terms on the right are coprime. If a prime ideal p divided
both of them, then p would divide their sum (2y) so p | (2y). Looking at the left
of the equation we see p divides (x) and therefore as in the previous example,
since x is odd, we cant have p dividing (2). But then p | (y) and p | (x) but this
also cant happen as x, y are coprime.

So, using Lemma 5.0.25.0.2 we see that we must have a3 = (y −
√
−5) and

b3 = (y +
√
−5) for some ideals a, b. Now, if we think of what the class group

having size 2 says, it means that in particular, we cannot have any non-principal
ideals whose cube is principal, since this would give an element of order 3 in the
class group. Therefore, both a and b must be themselves principal.

So lets just look as a = a+ b
√
−5. We must have

(a+ b
√
−5)3 = (y −

√
−5)

which means there is some unit u ∈ O×K such that

u(a+ b
√
−5)3 = y −

√
−5

now as elements, ot just ideals. Since O×K = {±1} as we saw in sheet 6, wlog we
can assume

(a+ b
√
−5)3 = y −

√
−5

(since −1 is a cube). If we expand out we get

a3 + 3a2b
√
−5− 15b2a− b35

√
−5 = y −

√
−5.

Now, equating each side we have y = a3 − 15ab2 and −1 = 3a2b − 5b3. The
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second equation tells us b | −1 so b = ±1. If we now, substitute this back into
the first equation we get −1 = 3a2 − 5 which has no solution for a ∈ Z. So
x3 = y2 + 5 has no integer solutions.

Exercise 5.0.5. Find all integer solutions to x3 = y2 + 13. (You will need to fist
compute a class group for this)
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Chapter 6

Geometry of numbers

NON-EXAMINABLE CHAPTER
In this chapter we will develop the machinery necessary for proving Theorem

4.0.34.0.3.

Definition 6.0.1. A lattice Λ ⊂ Rn is a subgroup (under addition) generated by
n linearly independent vectors.

Remark 6.0.2. If Λ is a lattice in Rn then

Λ = Ze1 ⊕ · · · ⊕ Zen

where ei are linearly independent vectors over R, i.e. there does not exist ri ∈ R
such that

∑
i riei = 0. So its not enough that the ei be independent over Q, so

(1, 0) and (π, 0) do not generate a lattice in R2.

Definition 6.0.3. If Λ ⊂ Rn is a lattice generated by ei then

P (Λ) = {x ∈ Rn | x =
∑
i

riei, 0 ≤ ri < 1}

is called the fundamental domain of Λ.

Note that if we λ ∈ Λ and let P (Λ) + λ = {x+ λ | x ∈ P (Λ)} then

Rn =
⋃
λ∈Λ

P (Λ) + λ.

Lemma 6.0.4. Let Λ ⊂ Rn be a lattice. Then the volume of P (Λ) does not depend
on the choice of basis of Λ. Moreover, if {ei} is the basis, then

Vol(P (Λ)) = | det(e1, e2, . . . , en)|

(here the right hand side is the determinant of the matrix whose columns are given by
the ei).
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Proof. The second statement is just linear algebra, so we will only prove the first.
Let fi denote a second basis of Λ and let M(ei),M(fi) denote the matrices
whose columns are given by ei and fi respectively. Then

M(ei) = M(fi)A

where A is a n× n matrix with entries in Z. Similarly ,

M(fi) = M(ei)B.

Therefore,
M(ei) = M(ei)BA

Now, since M(ei),M(fi) are non-degenerate we have BA = I and therefore
det(A) = ±1.

Lemma 6.0.5. Let S ⊂ Rn be a measurable set (i.e. Vol(S) = |
∫
·· ·
∫
S
dx1 · · · dxn|

exists) and Λ is a lattice. Then if Vol(S) > Vol(P (Λ)) then there exist x, y ∈ S
with x 6= y such that x− y ∈ Λ.

Furthermore, if S is compact, then the same conclusion holds if Vol(S) ≥
Vol(P (Λ)).

Proof. We begin by writing

Rn =
⋃
λ∈Λ

(P (Λ) + λ) (as a disjoint union)

therefore

S = Rn ∩ S =
⋃
λ∈Λ

(P (Λ) + λ) ∩ S (as a disjoint union).

From this it follows that

Vol(S) =
∑
λ∈Λ

Vol ((P (Λ) + λ) ∩ S) =
∑
λ∈Λ

Vol ((P (Λ)) ∩ (S − λ)).

Now, if P (Λ) ∩ (S − λ) are all disjoint, then the sum their volume is <
Vol(P (Λ)) contradicting our assumption that Vol(S) > Vol(P (Λ)). Therefore
two of these sets meet, say P (Λ) ∩ (S − λ) and P (Λ) ∩ (S − µ) (with λ 6= µ)
and therefore we have some x− λ = y − µ giving x− y = λ− µ ∈ Λ.

For the second part, if S is now compact with Vol(S) ≥ Vol(P (Λ)). Then
let S′ = (1 + ε)S such that Vol(S′) > Vol(P (Λ)). Then by the above, we can
find x, y ∈ S′ such that x− y ∈ Λ. Let Λε denote the set of such x, y.

Note that if ε′ ≤ ε then Λε′ ⊂ Λε. Therefore ∩ε>0Λε 6= ∅. So let λ ∈ ∩ε>0Λε.
We claim that λ = x− y for some x, y ∈ S. Take ε = 1/n and write λ = xn− yn
with xn, yn ∈ (1 + 1/n)S (which we can do by the first part). Since xn, yn ∈ 2S
for all n and 2S is compact. So (xn, yn) form a sequence in a compact set, so
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there is a subsequence that converges to a point (x, y). Since xn, yn ∈ (1+1/n)S
we have x ∈

⋂
(1 + 1/n)S = S and similarly y ∈ S. Since λ = xn − yn for all n

we see that in the limit λ = x− y which then gives the result.

Definition 6.0.6. A subset S ⊂ Rn is called:

1. Convex if whenever x, y ∈ S then the line segment joining x and y is also
contained in S.

2. Centrally symmetric if whenever x ∈ S then −x ∈ S.

Lemma 6.0.7 (Minkowski’s convex body lemma). Let S be a compact, convex and
centrally symmetric subset of Rn and Λ a lattice. If

Vol(S) ≥ 2n Vol(P (Λ))

then S contains a point of Λ.

Proof. Consider the set
1

2
S = {1

2
x | x ∈ S}.

Then Vol(1
2
S) ≥ Vol(P (Λ)). So by Lemma 6.0.56.0.5 there exist x, y ∈ 1

2
S such that

x− y ∈ Λ. We claim that x− y ∈ S.
Note that 2x, 2y ∈ S. Now, since S is centrally symmetric, we have −2y ∈ S.

Furthermore, since S is convex,

1

2
(2x− 2y) ∈ S.

Thus x− y ∈ S.

Let now apply this to number theory. Let K be a number field with [K :
Q] = n. Then we have n embeddings of K ↪→ C and in fact if we let r1 be the
number of real embeddings and r2 the number of complex conjugate embeddings
then we have:

Definition 6.0.8. Let K be a number field with r1 real embeddings and r2

complex conjugate pairs of embeddings, then the canonical embedding is

Θ : K −→ Rr1 × Cr2 ∼−→ Rn

given by

x 7→(σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x))

7→ (σ1(x), . . . , σr1(x),<σr1+1(x),=σr1+1(x), . . . ,<σr1+r2(x)),=σr1+1(x)

where the first r1 of the σi are the real embeddings then rest are the complex
ones and <,= denote real and imaginary parts.
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Example 6.0.9. 1. Let K = Q(
√
−d) with d a square-free positive integer.

Then the embedding is given by sending x+ y
√
−d to

(x, y
√
−d) ∈ R2.

2. If K = Q(
√
d) with d a square-free positive integer. Then the embedding

is given by sending x+ y
√
d to

(x+ y
√
d, x− y

√
d) ∈ R2.

Proposition 6.0.10. Let K be a number field with [K : Q] = n and Θ : K → Rn
is canonical embedding. Then Θ(OK) is a lattice in Rn and if P = P (Θ(OK)) then

Vol(P ) = 2−r2
√
|∆(OK)|

where r2 is the number of complex conjugate pairs of embeddings.
Furthermore, if a ⊂ OK is an ideal, then Λa := Θ(a) is a sublattice of Θ(OK).

Moreover,
Vol(P (Λa)) = 2−r2

√
|∆(OK)|N(a)

Proof. Let {ei} be an integral basis of OK . Then

Θ(OK) =

{∑
i

λiΘ(ei) | λi ∈ Z

}
.

We want to compute

|det(M(Θ))| := |det(Θ(e1), . . . ,Θ(en))|.

By definition

Θ(ei) = (σ1(ei), . . . , σr1(ei),<σr1+1(ei),=σr1+1(ei), . . . ,<σr1+r2(ei)),=σr1+1(ei))
T .

Now, note that

<σr1+1(ei) =
1

2
(σr1+1(ei)+σr1+1(ei)) =σr1+1(ei) =

1

2
√
−1

(σr1+1(ei)−σr1+1(ei)).

Using this we have

| det(M(Θ))| =
(

1

2

)2r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



σ1(e1) · · · σ1(en)
...

...
σr1(e1) · · · σr1(en)

(σr1+1(e1) + σr1+1(e1)) · · · (σr1+1(en) + σr1+1(en))
(σr1+1(e1)− σr1+1(e1)) · · · (σr1+1(en)− σr1+1(en))

...
...



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Doing simple row operations we can transform this into

(
1

2

)2r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



σ1(e1) · · · σ1(en)
...

...
σr1(e1) · · · σr1(en)

(σr1+1(e1) + σr1+1(e1)) · · · (σr1+1(en) + σr1+1(en))
2σr1+1(e1) · · · 2σr1+1(en)

...
...



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and then to

(
1

2

)r2
∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



σ1(e1) · · · σ1(en)
...

...
σr1(e1) · · · σr1(en)
σr1+1(e1) · · · σr1+1(en))
σr1+1(e1) · · · σr1+1(en)

...
...



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Notice the power of 1/2 has changed. But now, if we look back at Proposition
2.2.162.2.16 we see that this is simply

2−r2
√
|∆(OK)|.

Lets now look at the sublattice Λa. Note that as additive abelian groups we
have OK ∼= Zn and a is a subgroup of index N(a). Since Θ is injective we have
Λa is a subgroup of Θ(OK) of index N(a). From this it follows that

P (Λa) = N(a)P (Θ(OK))

(compare this with the proof of Proposition 3.4.53.4.5) from which the result follows.

Lemma 6.0.11. Let St ⊂ Rr1 × Cr2 ∼= Rn be a subset given by points (yi, zi) ∈
Rr1 × Cr2 such that ∑

i

|yi|+
∑
j

|zj| ≤ t.

Then S is compact, convex and centrally symmetric and moreover

Vol(S) =
2r1tn

n!

(π
4

)r2
.

Proof. S is closed and bounded and therefore is compact. S is also clearly
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symmetric. For λ ∈ (0, 1) we have∑
i

|λyi + (1− λ)y′i|+2
∑
j

|λzi + (1− λ)z′i| ≤
∑
i

|λyi|+ |(1− λ)y′i|+ 2
∑
j

|λzi|+ |(1− λ)z′i|

= λ
∑
i

|yi|+ (1− λ)
∑
j

|zi|+ λ
∑
i

|y′i|+ (1− λ)
∑
j

|z′i|

≤ λ+ (1− λ) = 1

From this it follows that S is also convex.
Note that if r1 = 1 and r2 then S = [−t, t] which has volume (in this case

length) 2. Similarly, if r1 = 0 and r2 = 1 then S is just a ball in C of radius 1
2
so

has volume (in this case area) πt
2

4
. We will prove the formula for the volume by

induction on (r1, r2).
Assume we know the formula for (r1, r2). Lets look at the (r1 + 1, r2) case.

Here the set is given by points such that

r1+1∑
i=1

|yi|+ 2

r2∑
j=1

|zj| ≤ 1

which can be rewritten as

r1∑
i=1

|yi|+ 2

r2∑
j=1

|zj| ≤ t− |y|

where y = yr1+1. This set has volume∫ 1

0

2r1tn

n!

(π
4

)r2
(t−|y|)ndy =

2r1tn

n!

(π
4

)r2 ∫ 1

0

(t−y)ndy =
2r1+1tn+1

n+ 1!

(π
4

)r2
.

A slightly more involved, yet still elementary proof gives the (r1, r2 + 1) and
thus the result.

Finally, with this we can finally prove Theorem 4.0.34.0.3

Theorem. Let K be a number field with r1 real embeddings and r2 conjugate pairs
of complex embeddings. Let [K : Q] = n and let a be an ideal of OK . Then there is
an element a ∈ a such that

|NK/Q(a)| ≤ n!

nn

(
4

π

)r2
|∆(OK)|1/2N(a)

Proof. Let St be as in Lemma 6.0.116.0.11 and pick t such that

Vol(St) = 2n Vol(P (Λa))
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i.e. such that
tn = 2n−r1π−r2n!

√
|∆(Ok)|N(a) ()

Then by Lemma 6.0.76.0.7 there is an a ∈ a such that Θ(a) ∈ St. Then we have

|NK/Q(a)| =
r1∏
i=1

|σi(a)|
r1+r2∏
j=r1+1

|σj(a)|2

(here we use Proposition 1.7.61.7.6). Now, using the arithmetic-geometric mean
inequality

n
√
z1 . . . zn ≤

1

n

∑
i

zi

for zi positive real numbers, we have

|NK/Q(a)| ≤

(
1

n

r1∑
i=1

|σi(a)|+ 2

n

r1+r2∑
j=r1+1

|σj(a)|

)n
≤ tn

n!

by definition of St. Using () then gives the result.
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