ALGEBRAIC NUMBER THEORY- SHEET 5

CHRISTOPHER BIRKBECK

For this problem sheet you have a choice:

- Option 1: Hand in solutions to 5.2 and 5.3.
- Option 2: Hand in a solution to 5.8

Solutions should be uploaded to moodle by: 11:59pm on 28/02/2021

Exercise 5.1. Let p be a prime number and let α be a root of $x^p - p$. Set $K = \mathbb{Q}(\alpha)$.

- (1) Find the minimal polynomial of α .
- (2) Calculate the discriminant of the basis $B := \{1, \alpha, \dots, \alpha^{p-1}\}.$
- (3) Show that B is an integral basis. In other words show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.

Exercise 5.2. Let α be a root of $x^3 - 2x + 2$ and let $K = \mathbb{Q}(\alpha)$.

- (1) Find the minimal polynomial of α .
- (2) Calculate the discriminant of the basis $B := \{1, \alpha, \alpha^2\}$.
- (3) Show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.

Exercise 5.3. Let α be a root of $x^5 - 37$ and let $K = \mathbb{Q}(\alpha)$.

- (1) Find the minimal polynomial of α .
- (2) Calculate the discriminant of the basis $B := \{1, \alpha, \alpha^2, \alpha^3, \alpha^4\}$.
- (3) Show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.

[Hint: Look for a change of variables that will make the polynomial Eisenstein at all the places you need simultaneously. Then use question 5.6 and extra arguments to conclude.]

Exercise 5.4. Let α be a root of $x^4 - 3$ and let $K = \mathbb{Q}(\alpha)$.

- (1) Find the minimal polynomial of α .
- (2) Calculate the discriminant of the basis $B := \{1, \alpha, \alpha^2, \alpha^3\}$.
- (3) Show that B is an integral basis. In other words show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.

Exercise 5.5. Let α be a root of $x^3 + 3x + 6$ and let $K = \mathbb{Q}(\alpha)$.

- (1) Find the minimal polynomial of α .
- (2) Calculate the discriminant of the basis $B := \{1, \alpha, \alpha^2\}$.
- (3) Show that B is an integral basis. In other words show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.

Exercise 5.6. Let K be a number field, $\alpha \in \mathcal{O}_K$ and $m \in \mathbb{Z}$. Let $\beta = \alpha + m$.

- (1) Show that α and β have minimal polynomials m_{α} , m_{β} of the same degree.
- (2) Let $\deg(m_{\alpha}) = n$, $B_{\alpha} = \{1, \alpha, \dots, \alpha^{n-1}\}$, $B_{\beta} = \{1, \beta, \dots, \beta^{n-1}\}$. Show that

$$\Delta(B_{\alpha}) = \Delta(B_{\beta}).$$

Exercise* 5.7. Let $K = \mathbb{Q}(\sqrt{7}, \sqrt{10})$ and let $\alpha \in \mathcal{O}_K$.

(1) Let $f \in \mathbb{Z}[x]$ and let \overline{f} denote the reduction modulo 3 of f. Show that $f(\alpha)$ is divisible by 3 in $\mathbb{Z}[\alpha]$ if and only if \overline{f} is divisible by \overline{m}_{α} in $\mathbb{F}_3[x]$.

(2) Suppose that
$$\mathcal{O}_K = \mathbb{Z}[\alpha]$$
. Let
$$\alpha_1 = (1+\sqrt{7})(1+\sqrt{10})$$

$$\alpha_2 = (1+\sqrt{7})(1-\sqrt{10})$$

$$\alpha_3 = (1-\sqrt{7})(1+\sqrt{10})$$

$$\alpha_4 = (1-\sqrt{7})(1-\sqrt{10}).$$

Show that for all $i \neq j$, the product $\alpha_i \alpha_j$ is divisible by 3 in $\mathbb{Z}[\alpha]$ but that 3 does not divide any power of any α_i . [Hint: Look at the trace of $\alpha_i^n/3$ to deduce it is not an algebraic integer. To do this, show that $\operatorname{Tr}(\alpha_i^n) = \alpha_1^n + \alpha_2^n + \alpha_3^n + \alpha_4^n$ and compare with $(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)^n$.]

(3) For $i=1,\ldots,4$, let $f_i\in\mathbb{Z}[x]$ be such that $f_i(\alpha)=\alpha_i$. Show that (modulo 3), \overline{m}_{α} divides $\overline{f}_i\overline{f}_j$ for $i\neq j$ and that \overline{m}_{α} does not divide \overline{f}_i^n for any $n\in\mathbb{Z}_{\geq 1}$.

Hence deduce that for each i, \overline{m}_{α} has an irreducible factor in $\mathbb{F}_3[x]$ which does not divide \overline{f}_i but which does divide all \overline{f}_j for $j \neq i$. [You may want to use that $\mathbb{F}_3[x]$ is a UFD.]

- (4) Show that \overline{m}_{α} has at least four distinct irreducible factors in $\mathbb{F}_3[x]$. From this and the fact that \overline{m}_{α} has degree at most 4, show that we cannot have $\mathcal{O}_K = \mathbb{Z}[\alpha]$ and thus there is no α such that \mathcal{O}_K is generated by a single element. [Hint: How many monic polynomials of degree 1 are there in $\mathbb{F}_3[x]$?]
- **Exercise* 5.8.** (1) Let p be a prime, k a positive integer and ζ_{p^k} be a (primitive) p^k -th root of unity and let $\lambda_{p^k} = 1 \zeta_{p^k}$. Show that

$$\mathbb{Z}[\zeta_{p^k}] = \mathbb{Z}[\lambda_{p^k}]$$

and

$$\Delta(\{1,\zeta_{p^k},\ldots,\zeta_{p^k}^{\varphi(p^k)-1}\}) = \Delta(\{1,\lambda_{p^k},\ldots,\lambda_{p^k}^{\varphi(p^k)-1}\}).$$

Here φ is the usual Euler totient function.

- (2) Show that $\Delta(\{1, \zeta_{p^k}, \dots, \zeta_{p^k}^{\varphi(p^k)-1}\})$ divides $p^{k\varphi(p^k)}$.
- (3) Let p be a prime and $n = p^k$. Let $S = \{1 \le x \le n \mid p \nmid x\}$ (i.e the set of elements less than n which are not divisible by p). Show that

$$\prod_{r \in S} (1 - \zeta_{p^k}^r) = p$$

and from this deduce that $\lambda_{p^k}^{\varphi(p^k)}$ divides p in $\mathbb{Z}[\zeta_{p^k}].$

(4) Using the above prove that if $K = \mathbb{Q}(\zeta_{p^k})$ then $\mathcal{O}_K = \mathbb{Z}[\zeta_{p^k}] = \mathbb{Z}[\lambda_{p^k}]$.