ALGEBRAIC NUMBER THEORY- REVISION QUIZ

(1) Let p, q be prime numbers such that $q^{p-1} \not\equiv 1 \mod p^2$, let Question 1. α be a root of $x^p - q$ and let $K = \mathbb{Q}(\alpha)$. Show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.

(2) Using this find the ring of integers of $\mathbb{Q}(\sqrt[5]{37})$ and give an example of a ramified prime.

Question 2. Describe the factorization of the following ideals into prime ideals in $\mathbb{Q}(\zeta_{55})$:

$$(13)$$
 (14) (5)

Question 3. Compute the class group of $\mathbb{Q}(\sqrt{168})$.

Question 4. Let K/F be an extension of number fields and assume that $\alpha \in K$ is a root of a monic polynomial with coefficients in \mathcal{O}_F . Prove that α is an algebraic integer.

(1) Let p be a prime, k a positive integer and ζ_{p^k} be a p^k -th Question 5. root of unity and let $\lambda_{p^k}=1-\zeta_{p^k}.$ Show that

$$\mathbb{Z}[\zeta_{p^k}] = \mathbb{Z}[\lambda_{p^k}]$$

and

$$\Delta(\{1,\zeta_{p^k},\ldots,\zeta_{p^k}^{\varphi(p^k)}\}) = \Delta(\{1,\lambda_{p^k},\ldots,\lambda_{p^k}^{\varphi(p^k)}\}).$$

Here φ is the usual Euler totient function.

- (2) Show that $\Delta(\{1,\zeta_{p^k},\ldots,\zeta_{p^k}^{\varphi(p^k)}\})$ divides $p^{k\varphi(p^k)}$.
- (3) Let p be a prime and $n=p^k$. Let $S=\{1\leq x\leq n\mid p\nmid x\}$ (i.e the set of elements less than n which are not divisible by p). Show that

$$\prod_{r \in S} (1 - \zeta_{p^k}^r) = p$$

and from this deduce that $\lambda_{p^k}^{\varphi(p^k)}$ divides p in $\mathbb{Z}[\zeta_{p^k}]$. (4) Using the above prove that if $K=\mathbb{Q}(\zeta_{p^k})$ then $\mathcal{O}_K=\mathbb{Z}[\zeta_{p^k}]=\mathbb{Z}[\lambda_{p^k}]$.