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Abstract

We use results by Chenevier and Hansen to interpolate the classical Jacquet-Langlands

correspondence for Hilbert modular forms, which gives an extension of Chenevier’s results

to totally real fields. From this, in the case of totally real fields of even degree, we

obtain isomorphisms between eigenvarieties attached to Hilbert modular forms and those

attached to modular forms on a totally definite quaternion algebra. More generally, for

any field and quaternion algebra, we get closed immersions between certain eigenvarieties

associated to overconvergent cohomology groups.

Using this, we compute slopes of Hilbert modular forms near the centre and

near the boundary of the weight space and prove a lower bound on the Newton polygon

associated to the Up operator. Near the boundary of the weight space we give some

evidence that the slopes are “generated" from the slopes in parallel weight 2 and state a

conjecture on the structure of slopes.
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Introduction

History

The idea of modular forms living in p-adic families began with Serre [Ser73Ser73] who consid-

ered p-adic limits of compatible families of q-expansions of modular forms. This was the

starting point for a vast theory. The work of Serre was then formalized by Katz [Kat73Kat73],

who reformulated these ideas into a more geometric context and showed that the p-adic

families were in fact part of a wider range of p-adic objects. After this, Dwork studied the

action of the Up operator on these spaces and showed it is a compact operator, thus giving

us a way to study these spaces in much more detail. Then Hida, in a series of papers in

the 1980’s, showed that the space of p-ordinary eigenforms (which means that their Up
eigenvalue is a p-adic unit) of weight k ≥ 3 has rank depending only on k modulo p− 1

(or 2 for p = 2). From this it follows that these p-ordinary modular forms naturally live in

p-adic families. This was then extended by Coleman-Mazur and Buzzard [CM98CM98, Buz07Buz07]

to finite slope eigenforms (which means the Up eigenvalue is not 0), by constructing

geometric objects which they called eigencurves or more generally eigenvarieties. These

are rigid analytic varieties which parametrize all such modular forms of a fixed level and

their points correspond to systems of Hecke eigenvalues of finite slope overconvergent

modular forms. In [Buz07Buz07], Buzzard creates an eigenvariety machine, which can be used

to construct eigenvarieties by inputting a weight space and some suitable Banach modules

together with an action of a Hecke algebra. Using this, Ash-Stevens [AS97AS97], Hansen

[Han17Han17] and Urban [Urb11Urb11] (among others) have used overconvergent cohomology groups

to construct eigenvarieties associated to a large class of reductive groups. Eigenvarieties

have many applications such as in the proof of the Fontaine-Mazur conjecture for GL2.

Moreover, understanding their geometry can give insights into parity conjectures for

Selmer groups associated to modular forms (cf. [PX14PX14]).
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p-adic Langlands functoriality

Using the more general constructions of eigenvarieties given by [Buz07Buz07], it is possible to

construct eigenvarieties associated to spaces of modular forms on a quaternion algebra

D (so called quaternionic modular forms) and one can then study their relationship

to eigenvarieties associated to spaces of modular forms (on GL2). With this in mind,

we recall that the classical Jacquet-Langlands correspondence tells us (roughly) that the

classical spaces of quaternionic modular forms SDk (N) of weight k and level N on a

quaternion algebra D are isomorphic as Hecke modules to the spaces Sd-new
k (Nd) of

d-new modular forms for GL2, where D has discriminant d . One can then ask if this

extends to families of modular forms, i.e., if we can use this to relate the eigenvariety

XD coming from these quaternionic modular forms to the eigenvariety XGL2 coming

from the usual spaces of modular forms . Over Q, this was answered by Chenevier in

[Che05Che05], who showed that there is a closed immersion XD ↪→XGL2 which interpolates

the classical Jacquet-Langlands correspondence11. This result is an instance of what is

now called p-adic Langlands functoriality. Other examples of this can be found in work of

Hansen [Han17Han17] and Ludwig [Lud14Lud14].

Going back to the result of Chenevier, if one picks D/Q to be a definite quaternion

algebra, then the spaces of overconvergent quaternionic modular forms are of a combina-

torial nature due to their much simpler geometry. This means that, if one is interested in

computing the action of the Up operator on the space of overconvergent modular forms,

then one can reduce to computing on spaces of overconvergent quaternionic modular

forms. This is the strategy used in [LWX14LWX14, WXZ14WXZ14]. Our first goal is to extend the results

of Chenevier to a totally real field F . In particular, we have the following theorem:

Theorem. Let D/F be a totally definite quaternion algebra of discriminant d defined over

a totally real field F . Let p be a rational (unramified) prime and n an integral ideal of F

such that p - nd and (n, d) = 1. Let XD(np) be the eigenvariety of level np attached to

quaternionic modular forms on D. Similarly, let XGL2(ndp) denote the eigenvariety associated

to cuspidal Hilbert modular forms of level ndp (with the associated moduli problem for this

level being representable) as constructed in [AIP16bAIP16b].

Then there is a closed immersion ιD : XD(np) ↪→XGL2(ndp) which interpolates the

classical Jacquet-Langlands correspondence. Moreover, when [F : Q] is even, one can choose D

with d = 1 so that the above is an isomorphism between the corresponding eigenvarieties.

More generally, for any quaternion algebra D and sufficiently small level (see

Definition 1.3.61.3.6) np, we construct (following [Han17Han17]) eigenvarieties HD(np) associated to

1In general Chenevier proves that one gets a isomorphism onto the d-new ‘part’ of the eigenvariety.
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overconvergent cohomology groups H•(YD(np),L(Dλκ,r)), where YD(np) is a Shimura

variety associated to D and L(Dλκ,r) is a local system on YD(np), where Dλκ is a

distribution module (see Chapter 55 for the relevant definitions) . In this case, we use

results of Hansen in [Han17Han17] to prove:

Theorem. LetD be any quaternion algebra of discriminant d and np a sufficiently small level.

Let HD(np),HG(np) be the eigenvarieties associated to overconvergent cohomology groups for

ResF/Q(D×) and G = ResF/Q(GL2) respectively. Then there is a closed immersion

HD(np)o ↪→HG(npd)

interpolating the classical Jacquet-Langlands correspondence. Here HD(np)o denotes the core

of the eigenvariety HD(np) (see Definition 2.5.82.5.8).

Slopes of Hilbert modular forms

Our second goal is to use the overconvergent Jacquet-Langlands correspondence to study

the p-adic valuation of the Up eigenvalues (called the slopes). In the case of modular

forms over Q this question has received a lot of attention recently, with a focus on

studying slopes of overconvergent modular forms as they move in p-adic families. To

make this more precise, consider the Iwasawa algebra Λ = ZpJZ×p K and let W be the

associated rigid analytic space, which is called the weight space. Elements of W(Cp) are
identified with continuous homomorphisms Z×p → C×p , which are called weights. If we

write Z×p ∼= H × (1 + qZp) where H is the torsion subgroup and where q = p if p is odd

and q = 4 for p = 2, then taking a primitive Dirichlet character ψ modulo pt and the

character zk of 1 + qZp sending z 7→ zk for k ∈ Z, we get an element of the weight space

given by zkψ. The weights of the form zk are called algebraic and weights of the form zkψ

are called arithmetic. If we now take γ a fixed topological generator of 1 + qZp, and let

w(κ) = κ(γ)− 1 for κ a weight, then the algebraic weights are in the region of the weight

space such that valp(w(κ)) ≥ 1 (for p odd) called the centre, and the arithmetic weights

zkψ (for ψ sufficiently ramified at p) are on the boundary where valp(w(κ)) ≤ 1
p−1 (again

for p odd22). The reason we make such a distinction is that the behaviour of the slopes

of the Up operator acting on weight κ modular forms depends on where in the weight

space κ lives, as we shall see later. Lastly, we note that W ∼=
⊔
χWχ where the χ run

over characters of H and Wχ is the corresponding component of the weight space.

Over Q, the behaviour of the slopes of Up was first studied by Gouvéa-Mazur in

[GM92GM92] where they conjectured that if k1, k2 are large enough with k1 ≡ k2 mod pn(p−1)

2For p = 2 the centre is where val2(−) ≥ 3 and the boundary where val2(−) < 3.

4



for n ≥ α for some rational number α, then the dimension of the space of modular

forms of weight k1 and slope α should be the same as that of weight k2 and slope α.

Inspired by this, Buzzard, Calegari, Jacobs, Kilford and Roe (among others) computed

and studied slopes of modular forms for weights both in the centre and boundary of the

weight space. In particular, in [Buz05Buz05], Buzzard computed slopes in many cases and was

able to make precise conjectures about their behaviour. Very little is known about the

slopes near the centre of weight space and the geometry of the eigenvariety is expected to

be more complicated. Results about slopes in this case can be found in [BC05BC05, BP16bBP16b]. In

particular, Bergdall-Pollack have constructed a ‘ghost series’ which conjecturally explains

much of the behaviour of the slopes both near the centre and boundary of the weight

space.

Near the boundary Buzzard–Kilford, Jacobs and Roe were among the first to give

evidence that the sequence of slopes appear as a union of arithmetic sequences with same

common difference. This then implies that over the boundary of the weight space the

eigenvariety looks like a countable union of annuli. For p = 2, 3 and trivial tame level

this was proven by Buzzard-Kilford and Roe in [BK05BK05, Roe14Roe14]. For more details on the

precise conjectures and their implications, see [BG16BG16]. More generally, the recent work

of Liu-Wan-Xiao and Wan-Xiao-Zhang in [LWX14LWX14, WXZ14WXZ14] have proven similar results

by working with quaternion algebras and using Chenevier’s results mentioned above. In

particular, they have defined ‘integral models’ for these spaces of modular forms and from

this shown that over the boundary of weight space the eigenvariety associated to a totally

definite quaternion algebra over Q is the disjoint union of countably many annuli. The

existence and construction of these integral models is a very active area of research (see

for example [AIP18AIP18, AIP16aAIP16a, BP16aBP16a, BP16bBP16b, BG16BG16, JN16JN16]). Understanding the geometry of

eigenvarieties has many number theoretical applications; for example Pottharst and Xiao

in [PX14PX14] have recently reduced the parity conjecture of Selmer ranks for modular forms

to a similar statement about the geometry of the eigenvariety.

In general, for overconvergent modular forms over Q we have the following

conjecture (which can be found in [LWX14LWX14, BP16aBP16a]) for the behaviour of the Newton

polygon of Up.

Conjecture. (Folklore) For κ a weight, let s1(κ), s2(κ), . . . denote the slopes of the Newton

polygon of Up acting on the spaces of overconvergent modular forms of weight κ and fixed level.

Let NPκ(Up) be the Newton polygon of det(1−XUp). Then there exists an r > 0 depending

only on the componentWχ of the weight space containing κ, such that

(a) For κ ∈ Wχ with 0 < valp(w(κ)) < r, NPκ(Up) depends only on valp(w(κ)). Moreover,

for weights in this component, the break points of the Newton polygon are independent of κ.

5



(b) The sequence {si(κ)/ valp(w(κ))} is a finite union of arithmetic progressions (after possi-
bly removing a finite number of terms), which is independent of κ for 0 < valp(w(κ)) < r.

(c) Assuming (a) above, the set of slopes si(κ) are given by

∞⋃
i=0

(
Sseed + i · | H |

2

)
,

where Sseed is a fixed finite set33, which only depends on the number of cusps of X0(M)

(withM the tame level) and the classical slopes in weight 2 at different components of the

weight space.44

Our goal here is to give computational evidence for a similar structure to the

slopes of overconvergent Hilbert modular forms (in particular part (c) above) and prove a

lower bound for the Newton polygon of Up. We compute explicit examples of sequences of

slopes of the Up operator by using the overconvergent Jacquet-Langlands correspondence.

Throughout, we work with arithmetic weights both in the centre and boundary of the

weight space. The reason we only do this for arithmetic weights is for simplicity and these

results can most certainly be extended to any weight.

Our computations show that, for κ near the boundary of the weight space (see

Definition 3.4.123.4.12), the slopes of classical Hilbert modular forms in weight κ are generated

analogously to part (c) above. In particular, our computations show that in some cases

the slopes are not given as a union of arithmetic progressions. Moreover, the reason for

which the slopes for modular forms over Q are in arithmetic progression is due to the

simpler nature of the Up operator in this case (specifically the way in which is it compact

(cf. 8.3.38.3.3 )).

Our methods also allow us to compute finite approximations Up(N,κ) to the

infinite matrix of Up acting on overconvergent Hilbert modular forms of weight κ. In

this case, since the Up operator is compact, one can prove there exists a function

f : Z≥0 → Z≥0 (see Warning 8.0.28.0.2 for an explicit lower bound of this function) such that

if the size of our approximation matrix is N ×N , then the first f(N) smallest slopes of

Up(N,κ) coincide with the first f(N) smallest slopes of overconvergent Hilbert modular

forms of weight κ. Unfortunately, the best bounds on f that we have grow very slowly

as N increases; this means that, in practice, to prove that all of the approximated slopes

we have computed are in fact slopes of overconvergent Hilbert modular forms (which we

3Here the notation is such that if S is a set of slopes and i ∈ Z, then we let S + i denote the set, where
we add i to each slope in S.

4This was shown to follow from (a) by Bergdall-Pollack in [BP16aBP16a].

6



expect is the case), our N needs to be much larger than we can currently compute with.55

Our computations do however have much of the (conjectural) structure that one

has over Q; meaning there is evidence that the overconvergent slopes can be ‘generated’

by slopes appearing in the classical spaces of Hilbert modular forms of (parallel) weight 2

analogous to what one sees over Q (e.g. part (c) of the conjecture above). See Conjecture

8.3.18.3.1. As an example of the computations we have done, we have the following:

Example (Split case). Let F = Q(
√

13), p = 3 (which is split), level U0(9) and nebenty-

pus ψ of conductor 9. Then we have the following sequence of approximated slopes of

Up (here (and throughout) we write (s,m) for the slope s together with the multiplicity

m with which it appears. The size corresponds to the size of our approximation matrix

Up(N,κ)).

Weight Size Slopes

[4, 4]1 20 · 12 (0, 1), (1, 2), (2, 4), (3, 4), (4, 6), (5, 10), (6, 7), (7, 6), (15/2, 2),

(8, 12), (17/2, 2), (9, 5),(∞, 144)

[4, 4]ψ 30 · 12 (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 16), (5/2, 10), (3, 24),

(7/2, 14), (4, 32), (9/2, 18), (5, 40), (11/2, 22), (6, 48), (13/2, 26),

(7, 50), (15/2, 18), (8, 19), (17/2, 4), (9, 2)

Observation. (a) Looking at these computations we see that near the centre of the

weight space, where the character is trivial (1), the slopes are ‘almost’ in arithmetic

progression apart from a few entries, but there is little structure to the multiplicities.

Moreover, in this case, since the wild level is large, we see that we get lots of forms of

infinite slope, as is expected.

(b) If we now pick ψ to be a character of conductor 9, and consider weight [4, 4]ψ, then

the sequence of approximated slopes appears as the union of arithmetic progressions

with common difference 1/2. Moreover, we see that the multiplicities with which the

slopes appear is increasing, which is something that cannot happen (in many cases)

for modular forms over Q by the work of [LWX14LWX14]. In Chapter 88 we give some insight

as to why we see this phenomenon and observe some structure of the slopes similar

to that in [BP16aBP16a]. Lastly, we will see that the computations indicate that these slopes

(once appropriately normalized) only depend on which component of the weight

space the weight lies (and possibly on how close to the boundary of the weight space

we are).

5For example, in some of our computations, we would need our approximation matrix to have N ∼ 106,
although computations suggest that, in this case, we only need N ∼ 480, but we cannot at this time prove
this much stronger bound.
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Since we are in the split case, we have that Up = Up1Up2 where Upi are commuting

Hecke operators, therefore one can study the slopes of Upi acting on classical spaces of

Hilbert modular forms in order to understand the classical slopes of Up. To this end we

have the following table listing classical slopes of Up, Up1 , Up2 .

Operator Weight Classical Slopes

Up [2, 2]ψ (0, 1), (1/2, 2), (1, 6), (3/2, 2), (2, 1)

Up1 [2, 2]ψ (0, 3), (1/2, 6), (1, 3)

Up2 [2, 2]ψ (0, 3), (1/2, 6), (1, 3)

Up [4, 2]ψ (0, 1), (1/2, 2), (1, 7), (3/2, 4), (2, 8), (5/2, 4), (3, 7), (7/2, 2),

(4, 1)

Up1 [4, 2]ψ (0, 3), (1/2, 6), (1, 6), (3/2, 6), (2, 6), (5/2, 6), (3, 3)

Up2 [4, 2]ψ (0, 9), (1/2, 18), (1, 9)

In these cases one can write the slopes of Up as a pair (λp1 , λp2) where λpi is a

slope of Upi and λp = λp1 +λp2 is the corresponding slope of Up. This can be represented

pictorially as:

4

1 1

1

1

1

1

1

1

Weight [2,2]

1/2 1
0

1/2

1

1/2 1 3/2 2 5/2 31/2 1
0

1 1 2 1 2 1 1

1 4 2 4 2 4 1

1 1 2 1 2 1 1

Weight [4,2]

where the axes represent the slopes of Upi and the numbers on the grid are the multiplicity

with which the pair of slopes appears as a slope of Up. These computations suggest that,

not only are the slopes of Upi given as unions of arithmetic progressions, but that the

above pictures have a precise structure independent of the weight. See Section 8.18.1 for

more details and conjectures.

In the overconvergent case, we run into the problem that the action of Upi on

S†κ,r(U) is not compact, so one cannot directly compute their slopes (apart from the slopes

of classical forms). To get around this, in Subsection 8.1.58.1.5 we describe two methods of

computing overconvergent slopes of Upi and give some examples.

Example (Inert case). Let F = Q(
√

5), p = 2 (which is inert) level 8p11 (where p11 | 11)

and a primitive Hecke character ψ of conductor 8. Then we have the following sequence

of approximated slopes (with the same notation as above):
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Level Weight Size Slopes

U0(8p11) [4, 4]ψ 24 · 16 (2/3, 6), (1 , 4), (4/3, 6), (3/2, 8), (2, 16), (5/2, 16),
(8/3, 6), (3, 20), (10/3, 6), (7/2, 16), (11/3, 12), (4,
24), (13/3, 12), (9/2, 24), (14/3, 6), (5, 36), (16/3,
6), (11/2, 24), (17/3, 12), (6, 24), (19/3, 12), (13/2,
16), (20/3, 6), (7, 20 ), (22/3, 6), (15/2, 16), (8, 16),
(17/2 , 8)

U0(2p11) [4, 4]1 200 (2, 8), (4, 1), (5, 4), (16/3, 6), (6, 6), (7, 2), (8, 7),
(17/2, 12), (9, 4), (10, 21), (11, 2), (12, 6), (25/2,
4), (13, 6 ), (27/2, 4), (14, 3 ), (15, 22), (16, 8 ),
(33/2, 4), (17, 13 ), (35/2, 24), (18, 21 ), (19, 6 ),
(39/2, 2), (20, 3 ), (21, 1 )

Observation. (a) Here again we see that the approximated slopes are in arithmetic

progression and again the multiplicities are increasing. We note here that in the

example computed above, not all the arithmetic progressions have the same difference,

which again is something that has not been observed in the case of modular forms

over Q and again, by [LWX14LWX14], cannot happen in many cases. Lastly, as in the

previous example, we will see in Chapter 88 that computations suggest that these

slopes (once normalized) only depend on which component of the weight space the

weight lives. See Conjecture 8.3.18.3.1.

(b) To contrast, we also compute slopes near the centre at a low level. Here we see much

less structure and that many slopes are not integers. We note also that that 2 is

U0(p11)-irregular (cf. Section 8.48.4 ).

For D totally definite with Disc(D) = 1 and U a sufficiently small level, let h be

the number of points66 in the corresponding Shimura variety YD(U), (which is finite by

Proposition 1.3.51.3.5). In Chapter 77, we will show that the Up operator naturally has the form

of an infinite block matrix whose blocks have size h× h. Furthermore, we will see that

the entries of the block matrices lying on the diagonal of Up are given (up to a p-power

factor) by uniformly continuous functions. Using this, we will give a criterion (which can

be checked in finite time77) such that the submatrix of Up given by deleting the lower

diagonal blocks has slopes matching the computed slopes of Up.

Remark. In all the cases we have computed, one conjectures (cf. Conjecture 8.3.18.3.1) that

the slopes near the boundary can be generated by an algorithm whose only input is
6If we let SD2 (U) denote the space of weight [2, 2] modular forms on D including the space of elements

that factor through the reduced norm map (these correspond to Eisenstein series, see [DV13DV13, Definition 3.7])
then h = dim(SD2 (U)).

7Although, in our case, the check would take too long to finish, so we only check on a small subset.
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the number of cusps and the slopes appearing in weight [2, 2]ψτn for τ the Teichmüller

character, which is analogous to the folklore conjecture above for modular forms over Q.

Remark. Our computations near the boundary, for a fixed field F and prime p, are

limited to only changing the algebraic part of the weight and not the finite part, which

means valp(w(κ)) (which is defined in 3.4.123.4.12) is always fixed. The reason for this is that

changing valp(w(κ)) requires working with more ramified characters and levels, which

translates into much larger matrices.

In Section 8.48.4, we also collect some computations of slopes for weight lying on the

centre of the weight space (i.e. with trivial character). In this setting, we observe that near

the centre the slopes are no longer given by unions of arithmetic progressions and that

there is a more complicated structure to the slopes, which is analogous to the behaviour

of modular forms over Q.

Lastly, we prove a lower bound for the Newton polygon of Up on overconvergent

Hilbert modular forms over a real quadratic field (although this can easily be adapted for

more general totally real fields of even degree).

Proposition. Let D/F be totally definite with d = 1 and let U be a sufficiently small level.

Let h be the class number of (D,U) (as defined in 1.3.31.3.3) and let κ be any arithmetic weight.

Then the Newton Polygon of the action of Up on overconvergent Hilbert modular forms of level

U weight κ lies above the polygon with vertices

(0, 0), (h, 0), (3h, 2h), . . . ,

(
i(i+ 1)h

2
,
(i− 1)i(i+ 1)h

3

)
, . . . .

Remark. Note this this is simply the polygon with h slopes 0, 2h slopes 1, 3h slopes 2

and so on.
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Notation

We collect here some of the most used notations throughout.

(1) Let F be a totally real field of degree g with ring of integers OF and let dF denote

the different ideal of F . Let Σ be the set of all places of F and Σ∞ ⊂ Σ the set of all

infinite places of F .

(2) For each finite place v of F , let Fv (or Fp for p the corresponding prime ideal) denote

the completion of F with respect to v and Ov the ring of integers of Fv. For an integral

ideal n, let Fn =
⊕

v|n Fv and similarly let On =
⊕

v|nOv. In particular, if we have

pOF =
∏f
i=1 pi, then let Op =

⊕
iOpi = OF ⊗ Zp.

(3) Let p be a rational prime which, unless otherwise stated, will be unramified in F . Let

Σp be the set of primes/places dividing p in F . For each p ∈ Σp, we let πp denote a

chosen (and fixed throughout) uniformizer of Fp (the completion at F at p).

(4) Let AF denote the adeles of F and AF,f the finite adeles. In the case F = Q we drop

the subscript F .

(5) For a fractional ideal r, let r+ denote the totally positive elements in r, and in general

‘+’ will denote ‘totally positive’. Moreover, let r∗ denote r−1d−1
F . (Note that this means

we have a pairing TrF/Q : r× r∗ → Z).

(6) Let Q denote the algebraic closure of Q inside C and we fix an algebraic closure Qp

of Qp. Furthermore, we fix embeddings inc : Q→ C and incp : Q→ Qp, which allow

us to think of the elements of Q as both complex and p-adic numbers.

(7) Let L be a complete extension of Qp, which contains the compositum of the images of

F under ι ◦ ιv, for v ∈ Σ∞ where ι : C ∼→ Qp such that ι ◦ inc = incp and ιv is the

field embedding of F into C given by v.

(8) Let D be a quaternion algebra over F and let GD = ResF/Q(D×) (we will sometimes

abuse notation and denote this simply by D). When D = M2(F ) we denote this

simply as G. Let T denote a fixed maximal torus of GD and T = ResOF /ZGm.
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Part I

Background
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In this expository section, we recall definitions of the classical spaces of modular

forms attached to a quaternion algebra over a totally real field, together with some

background on the construction of eigenvarieties.

We begin with some general background of quaternion algebras and then (following

Hida) define the relevant spaces of modular forms. We then state the classical Jacquet-

Langlands correspondence which will be essential later on. We also review some of the

elements used in the construction of eigenvarieties together with some of their properties.

Lastly, we state Chenevier’s Interpolation Theorem which will be used to relate different

eigenvarieties.
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Chapter 1

Classical background

1.1 Quaternion algebras

In this section we give a short introduction to quaternion algebras, including some

classification results. These results are all classical and can be found in many places (see

for example [Vig80Vig80]).

Definition 1.1.1. Let K be a field. A quaternion algebra over K is a K-algebra D, such

that:

(a) the centre of D is exactly K ;

(b) the dimension of D as a vector space over K is 4;

(c) D has no non-trivial 2-sided ideals.

Example 1.1.2. Let K be a field of characteristic different from 2 and let {i, j, k} be such
that i2 = a, j2 = b, ij = k = −ji for a, b ∈ K×. A simple check shows that this defines

a quaternion algebra, which we will denote by
(
a,b
K

)
.

Proposition 1.1.3. If Char(K) 6= 2, then any quaternion algebra can be written as
(
a,b
K

)
for some a, b ∈ K×.

Proof. See [Vig80Vig80, Chapter I ].

Example 1.1.4. If we take K = R, then we have M2(R) ∼=
(

1,1
R

)
and the Hamilton

quaternions H ∼=
(
−1,−1

R

)
. Moreover, one can show that up to isomorphism these are the

only quaternion algebras over R.
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Definition 1.1.5. We say that a quaternion algebra over a fieldK is split, if it is isomorphic

to M2(K), otherwise we say it is ramified. Furthermore, if L/K is a field extension, then

D ⊗K L is a quaternion algebra over L and if this new quaternion algebra over L is split

then we say that L splits D.

Proposition 1.1.6. If a ∈ K× is a square, then
(
a,b
K

)
∼= M2(K).

Proof. Let a = α2, then the map i 7→
(
α 0
0 −α

)
, j 7→

(
0 1
b 0

)
, k 7→

(
0 α
−bα 0

)
extends

K-linearly to give an isomorphism.

Corollary 1.1.7. If K is an algebraically closed field, then the only quaternion algebra (up to

isomorphism) is M2(K).

In general, with slightly more work, one can prove the following:

Proposition 1.1.8. If K is a finite extension of Qp, then there is a unique (up to isomorphism)

division quaternion algebra.

Proof. See [Vig80Vig80, Chapter II, Theorem 1.1].

Definition 1.1.9. If D is a quaternion algebra then there is a conjugation map x 7→ x̄.

Using this, one defines the reduced norm nrd : D → F× by nrd(x) = xx̄. Explicitly, for

D =
(
a,b
F

)
and α = u+ vi+wj + zj ∈ D, we have11 nrd(α) = u2 − av2 − bw2 + abz2.

Definition 1.1.10. Let K be a number field and let D be a quaternion algebra over K .

Let Kv be the completion of K at a place v and let Dv = D ⊗K Kv. Then this new

quaternion algebra can be split, in which case we say that D is split at v, otherwise we say

D is ramified at v. Let Ram(D) denote the set of places at which D is ramified.

Definition 1.1.11. The discriminant Disc(D) of a quaternion algebra is the product of the

finite primes22 in Ram(D).

Theorem 1.1.12. Let D, Ram(D) and K be as above, then:

(1) The set Ram(D) is finite and has an even number of elements, none of which is complex.

(2) For any set S of places of K not containing the complex places and having an even number

of elements, then there is exactly one quaternion algebra (up to isomorphism) D/K with

Ram(D) = S.
1 When our quaternion algebra is M2(F ) the reduced norm map is just the determinant map.
2Some authors also include the infinite places, but we do not follow this convention.
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Proof. The proof of (1) comes down to using the product formula for Hilbert symbols, but

(2) we requires a little more work. Both these results can be deduced from [Wei74Wei74, XIII.3,

Theorem 2 and XIII.6, Theorem 4].

Definition 1.1.13. We say a quaternion algebra D/Q is definite if ∞ ∈ Ram(D). In

general, for a quaternion algebra D over a totally real field F , we say that D is totally

definite if it ramifies at all the real places of F .

Definition 1.1.14. Let D/K quaternion algebra. A finitely generated OK-submodule I of

D is called a OK-lattice if KI = D. A OK-lattice is called an order if it is also a subring

D. Lastly, an order is called maximal (resp. an Eichler order) if it is not properly contained

in any other order (resp. if it can be written as the intersection of two maximal orders).

1.2 Modular forms on quaternion algebras

In this section we define the spaces of quaternionic modular forms over a totally real field,

following [Hid88Hid88].

Notation 1.2.1. (1) Let D/F denote a quaternion algebra over F with a fixed maximal

order OD .

(2) For D a quaternion algebra, we set ΣD = {v ∈ Σ∞ | D ⊗F Fv
∼= M2(Fv)} and

ΣD = Σ∞ −ΣD . Note that ΣD consists of all the infinite places where the quaternion

algebra splits and ΣD are all the infinite places where it ramifies.

(3) For m ∈ ZΣ∞ , we set mD = (mv)v∈ΣD (also define mD analogously with ΣD in place

of ΣD).

1.2.2. Let K0/Q (in C) be a finite Galois extension with ring of integers OK0 such that

there is an isomorphism

αD : D ⊗Q K0
∼−→M2(K0)Σ∞

Moreover, we assume that under this isomorphism, the projection D → M2(K0) at

each place v ∈ ΣD sends D into M2(K0 ∩ R) and such that OD ⊗Z OK0 is sent into

M2(OK0)Σ∞ (such a K0 always exists). Let GD,∞ denote the infinite part of GD(A).

Then αD induces an identification

GD,∞ = GL2(R)ΣD × (H×)ΣD ,
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where H is the usual Hamilton quaternion algebra. Let C∞ = (R×O2(R))ΣD × (H×)ΣD

and C+
∞ = (R×SO2(R))ΣD × (H×)ΣD , where O2 are the orthogonal matrices, and SO2

are the special orthogonal matrices.

Definition 1.2.3. Let t = |ΣD|. For A a OK0-algebra and n, v ∈ Zt≥0 we take

V (n, v,A) ⊂ A[Zv1 , . . . , Zvt ]

to be the space polynomials in variables (Zv)v∈ΣD where the degree of Zv is at most

nv. We give this space a right OD-action by letting g ∈ OD with αD(g) = γ = (γv)v ∈
M2(OK0)Σ∞ act by:

g :
∏

v∈ΣD

Zmv
v 7−→

∏
v∈ΣD

(cvZv + dv)
nv nrd(g)vv

(
avZv + bv
cvZv + dv

)mv

where γv =

(
av bv

cv dv

)
and then extend this action A-linearly. Note that mv ≤ nv. For

f ∈ V (n, v,A) we denote this action by f |n,vr, or simply f |r if there is no risk of

confusion. We denote the module by V (n, v,A) or Vn,v(A), but we note that this module

depends on the splitting behaviour of D which we suppress in our notation. We note that

this action naturally and uniquely extends to an action of GD(A).

Remark 1.2.4. Note that we have given a right action ‘at infinity’, meaning that the action

is coming from splitting our quaternion algebra at infinity. Later, in the p-adic setting, we

will work with totally definite quaternion algebras which we assume are split at all primes

over p, in this case we will give an action at p.

Definition 1.2.5. If x ∈ GD,∞ and J ⊂ ΣD, then we define a right action of GD,∞
on subsets ΣD by setting Jx = {v ∈ ΣD | v ∈ J and nrd(xv) > 0 or v ∈ ΣD −
J and nrd(xv) < 0}.

Note that given any J one can find xJ ∈ C∞ such that JxJ = ΣD. This can be

done by setting xJ to be such that nrd(xv) > 0 for v ∈ J and nrd(xv) < 0 otherwise.

Definition 1.2.6. Let H be the complex upper half space and let HΣD be |ΣD|-copies of
H indexed by the elements of ΣD. For each subset J ⊂ ΣD define the automorphy factor

jJ : GD,∞ ×HΣD −→ CΣD ,

by setting

jJ(γ, z) = (cvz
J
v + dv)v∈ΣD ,
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where γ =
((

av bv
cv dv

))
v∈Σ∞

and

zJv =

zv, if v ∈ J,

zv, if v ∈ ΣD − J.

From the definition it is easy to verify that jJ(γδ, z) = jJδ(γ, δ(z))jJ(δ, z).

Next we need to define the weights of our modular forms.

Definition 1.2.7. Let n ∈ ZΣ∞
≥0 and v ∈ ZΣ∞ such that n + 2v = (r, . . . , r) for some

r ∈ Z. By abuse of notation we denote (r, . . . , r) by r for r ∈ Z. Set k = n + 2 and

w = v + n+ 1. It follows from the above that all the entries of k have the same parity

and k = 2w − r. We call the pair (k, r) ∈ ZΣ∞
≥2 × Z a classical (algebraic) weight. Note

that given k (with all entries paritious and greater than 2) and r we can recover n, v, w.

In what follows we will move between both descriptions when convenient. We will call

(k, r, n, v, w) satisfying the above a weight tuple and usually denote it simply by (k, r).

Notation 1.2.8. If we take k ≥ 2 paritious, then it is common to fix a choice of w, n, v, r

as follows: let k0 = maxi{ki} then set v =
(
k0−ki

2

)
i
, n = k − 2, n0 = k0 − 2, r = n0

and w = n+ v + 1. In this way if speak of a (classical) weight k Hilbert modular forms,

where implicitly we mean we have k,w, n, v, r as above. Note that with this set-up we

have n+ 2v = r and w =
(
k0+ki−2

2

)
i
.

We give a function f : GD(A)→ V (nD, vD,C) an action of GD(A) by setting

(f|k,r,Jγ)(x) = jJγ (γ∞, i)−kD nrd(γ∞)wD f(xγ−1) · γ∞,

where J ⊂ Σ∞, γ ∈ GD(A) and i = (
√
−1, . . . ,

√
−1). With this, the spaces of

quaternionic modular forms are defined as follows:

Definition 1.2.9. For U an open compact subgroup of GD(Af ) and J ⊂ ΣD, we define

SDk,r,J(U) as the C-vector space of functions

f : GD(A) −→ V (nD, vD,C),

such that:

(a) f|k,r,Jγ = f for all γ ∈ UC+
∞.

(b) f(ax) = f(x) for all a ∈ GD(Q).
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(c) We now impose some holomorphy/antiholomorphy conditions. First, note that if

we identify H with GL2(R)/O2(R)R×, then GD,∞ naturally acts on HΣD . Now, let

GD,∞+ be the connected component of the identity in GD,∞. It is easy to see that

for each z ∈ HΣD , we can choose γ∞ ∈ GD,∞+ such that γ∞(i) = z. From this we

define

fx : HΣD −→ V (nD, vD,C),

for each x ∈ GD(Af ) by setting

fx(z) = jJ(γ∞, i)kD nrd(γ∞)−wD f(xγ∞) · γ−1
∞ .

Note f(ax) = f(x) for all a ∈ GD(Q), which insures that this is well-defined, indepen-

dent of the choice of γ∞. With this we impose the condition that for all x ∈ GD(Af ),
∂fx
∂zv

= 0 if v ∈ J , and ∂fx
∂zv

= 0 if v ∈ ΣD − J .

(d) When D = M2(F ) we also require that

∫
F\AF

f

([
1 x

0 1

]
g

)
dx = 0

for all g ∈ GD(A) and for each additive Haar measure dx on F\AF . Furthermore,

when F = Q, we need | Im(z)k/2fx(z) | to be uniformly bounded on H.

(e) When D is totally definite and the weight is (2, r) we quotient out the space of forms

that factor through the reduced norm map. In particular, if S(U) is the space of

functions satisfying (a) and (b) above, and Inv(U) is the subspace of S(U) of functions

that factor through nrd, then we let S2,r(U) = S(U)/ Inv(U). Note that in this case

there are no J ’s since D is totally definite.

Remark 1.2.10. It is well-known that these spaces are finite dimensional. See (for example)

[Gar90Gar90, Section 1.7].

Notation 1.2.11. (1) In the case when ΣD = ∅ (the totally definite case) we drop the

subscript J from SDk,r,J(U).

(2) In the case D = M2(F ) we drop the superscript D and denote the spaces simply as

Sk,r,J(U). Furthermore, in this case, if J = Σ∞ we again drop the subscript J .
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1.3 Shimura varieties

Definition 1.3.1. Take U an open compact subgroup of GD(Af ). We define the Shimura

variety33 associated to (GD, U) to be

YD(U) = GD(Q)\GD(A)/UC+
∞

(see 1.2.21.2.2 for the definition of C+
∞).

Proposition 1.3.2. For any given integral ideal n, one can find ti ∈ GD(A), i ∈ {1, . . . h}
with the ti having trivial infinite part and (ti)n = 1 , such that

GD(A) =

h⊔
i=1

GD(Q)tiUGD,∞+.

Proof. This follows from strong approximation.

1.3.3. When D is indefinite, then h = |F×\A×F / nrd(U)F×∞+| where ÔF = OF ⊗ Ẑ. In
particular, for M2(F ) and det(U) = ÔF

×
, we have that h is the narrow class number of

F . In this case we let ti ∈ A×F with (ti)∞ = 1 and such that ti = tiÔF ∩ F is a complete

set of representatives of the (narrow) ideal classes. Then setting
(

1 0
0 ti

)
gives the required

representatives. By abuse of notation we denote these representatives by ti. For D totally

definite, the number h depends on D and U and we call it the class number of (D,U).

Notation 1.3.4. For each i we set Γi(U) = GD(Q)∩tiUt−1
i GD,∞+ (this is an intersection

in GD(A)) and Γ
i
(U) = Γi(U)/Γi(U) ∩ F×.

For D indefinite define the complex analytic space YD,i(U) = Γi(U)\HΣD ; this

is a manifold if Γi(U) has no torsion. Moreover,

YD(U) ∼=
⊔
i

YD,i(U)

and this manifold will be compact if D is a division algebra; otherwise one needs to add

cusps to get a compact space.

Proposition 1.3.5. If D is totally definite then YD(U) is a finite set of points.

Proof. The work here is in proving that GD(Q)\GD(A) is compact, which follows from

[Hid06Hid06, Theorem 2.8]. Once we have this, then since YD(U) is the quotient of topological

3Some authors would call this a Shimura manifold as for some quaternion algebras this may not satisfy
Deligne’s axioms for a Shimura variety, but we will not follow this convention.
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group by an open subgroup, it must be discrete. Therefore YD(U) is compact and discrete,

hence it is finite.

Definition 1.3.6. For D indefinite, we call an open compact subgroup U of GD(Af )

sufficiently small, if for all i, Γ
i
(U) has no torsion.

In practice we will be interested in the following subgroups.

Definition 1.3.7. Let n =
∏
v q

ev
v be an integral ideal. For D a quaternion algebra with

(Disc(D), n) = 1 we fix splitting at all primes dividing n of D. Then we define:

U1(n) :=
{
γ ∈ (OD ⊗ Ẑ)× | γ ≡ ( ∗ ∗0 1 ) mod n

}
,

U0(n) :=
{
γ ∈ (OD ⊗ Ẑ)× | γ ≡ ( ∗ ∗0 ∗ ) mod n

}
,

U(n) :=
{
γ ∈ (OD ⊗ Ẑ)× | γ ≡ 1 mod n

}
.

Remark 1.3.8. By [Hid88Hid88, Lemma 7.1] one can always find n such that the above are

sufficiently small.

1.4 Hecke operators and the classical Jacquet-Langlands cor-

respondence

In this section (following [Hid88Hid88]) we define the Hecke operators acting on the spaces of

modular forms previously defined. With this we then state the classical Jacquet-Langlands

correspondence, which will be one of the main results used later on.

Let U,U ′ be open compact subgroups of GD(Af ) and x ∈ GD(Af ). Now, write

UxU ′ =
∐
i Uxi. Note that for x = xfx∞ ∈ GD(Af )C∞ we have UxfU ′ =

∐
i U(xi)f

if and only if (UC∞+)x(U ′C∞+) =
∐
i U(xi)fx∞.

Definition 1.4.1. Let U,U ′ be as above and f ∈ SDk,r,J(U). Then define [UxU ′] :

SDk,r,J(U)→ SDk,r,Jx(U ′) by

f|[UxU ′] =
∑
i

f|k,r,Jxi.

The product of two such operators is defined by taking U,U ′, U ′′ ∈ GD(Af ) open

compact subgroups and x, y ∈ GD(Af ) and then noting that UxU ′yU ′′ =
∐
i UxU

′yi =∐
i,j Uxjyi. From this, one obtains operators

[UxU ′][U ′yU ′′] : SDk,r,J(U) −→ SDk,r,Jxy(U
′′).
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Definition 1.4.2. Let U be as above and let ∆ be a subsemigroup of GD(Af ) such that

U ⊂ ∆. Then the Z-module of all finite formal sums of [UxU ] for x ∈ ∆ is an associative

ring under the product defined above. We call this the Hecke ring associated to (U,∆) and

we denote it by TTTD(U,∆).

In practice, we will take ∆ to be the following:

Definition 1.4.3. Let n be an ideal coprime to Disc(D) and fix splittings at all places

away from Disc(D). Let

∆D(n) =
{
γ ∈ GD(Af ) | γv =

(
av bv
cv dv

)
∈M2(Ov) with dv ∈ O×v , cv ∈ nv for all v|n

}
.

For U = U∗(n), we let TTTD(U) = TTTD(U,∆D(n)).

One particularly useful operator (as shown by the proposition below) is given by

[UxJU ] where J ∈ ΣD and xJ is as in 1.2.51.2.5.

Proposition 1.4.4. For each J ∈ ΣD the map [UxJU ] : Sk,r,J(U) −→ Sk,r,ΣD(U) is an

isomorphism which commutes with [UyU ] for all y ∈ GD(Af ).

Proof. First we note that since xJ,f = 1 we must have that [UxJU ] ◦ [UyU ] = [UyU ] ◦
[UxJU ]. Moreover, note that ΣxJ

D = J , therefore [UxJU ]2 = 1 and thus [UxJU ] is an

isomorphism.

This then shows that the Hecke action on SDk,r,J(U) is independent of J , so if

we only care about the Hecke action, there is no loss in dropping the subscript J . Now

one might ask to what extent is the Hecke action independent of D. For this there is the

following very important theorem.

Theorem 1.4.5. (Eichler, Jacquet–Langlands, Shimizu). Let D be a division quaternion

algebra over a totally real field F , with Disc(D) = d and n a ideal coprime to d. Then we

have an isomorphism of TTTD(U∗(n)) Hecke modules

SDk,r(U∗(n)) ∼= Sd-new
k,r (U∗(nd))

where ∗ ∈ {0, 1, ∅}.

Proof. This result is just a concrete realization of [JL70JL70, Theorem 16.1].

Note that we have not yet defined Sd-new
k,r (Ui(nd)) but this will be done in Definition

3.2.103.2.10. Also in the above we have denoted the level structures for D andM2(F ) by Ui(−)

which is a slight abuse of notation. We have also identified the Hecke operators away from

d for D and G via the fixed splittings of D.
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Chapter 2

Eigenvarieties

In this chapter we will give some background on eigenvarieties and how to induce maps

between them. We will begin by giving some properties of Banach modules and compact

operators on them, from which we will later construct eigenvarieties. There are many

sources for this material and we shall mainly follow [Buz07Buz07, Han17Han17, Urb11Urb11].

2.1 Banach modules

Definition 2.1.1. Let L be a complete non-archimedean field with norm |.|L. A (non-zero)

commutative Noetherian L-Banach algebra A is a commutative Noetherian L-algebra11

complete with respect to the metric induced by a norm |.| : A→ R≥0 satisfying

(a) For a, b ∈ A, |ab| ≤ |a| · |b|.

(b) For a ∈ A and λ ∈ L, |λa| = |λ|L|a|.

Definition 2.1.2. Let A be a commutative Noetherian L-Banach algebra. An A-module

M is called a Banach A-module if it is complete with respect to |.| : M → R≥0 satisfying

(a) For m ∈M , |m| = 0 if and only if m = 0.

(b) For m,n ∈M , |m+ n| ≤ max{|m|, |n|}.

(c) For a ∈ A and m ∈M , |am| ≤ |a||m|.

It follows from [Buz07Buz07, Proposition 2.1 (b)] that finite Banach A-module has a

canonical topology induced by any norm making it into a Banach A-module. We will

always assume that our modules have this topology.

1Throughout, our algebras will always be unital.
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Notation 2.1.3. For I an indexing set and ai ∈ A for i ∈ I , we say that limi ai = 0 if for

all ε > 0 there are only finitely many i ∈ I with |ai| > ε.

Definition 2.1.4. Let A,M be as above and I an indexing set. A subset {ei ∈M | i ∈ I}
with |ei| = 1 for all i ∈ I as called an orthonormal basis forM if the following holds:

(a) Every m ∈M can be uniquely written as
∑

i aiei with ai ∈ A and limi ai = 0.

(b) If m =
∑

i aiei, then |m| = maxi{|ai|}.

Such a module M is called orthonormalizable or simply ON-able. More generally, M is

called potentially ON-able if there exists a norm on M equivalent to the given norm under

which M becomes ON-able.

Definition 2.1.5. Let M,N be ON-able Banach A modules with bases {ei|i ∈ I} and
{fj |j ∈ J} respectively. Then, for φ : M → N a continuous A-module homomorphism,

we define the associated matrix coefficients (ai,j) by φ(ei) =
∑

j aj,ifj .
22

Definition 2.1.6. We say a Banach A-module P satisfies property (Pr) if there is a

Banach A-module Q, such that P ⊕Q (with its usual norm) is potentially ON-able.

2.2 Compact operators and slope decompositions

We now collect some results on compact operators on Banach modules and the induced

slope decompositions, which is crucial for the construction of eigenvarieties.

Definition 2.2.1. Let L/Qp be a finite extension and Q(X) ∈ L[X] be a polynomial of

degree d. We say Q has slope-≤ h, if Q(0) ∈ O×L and if the roots of Q∗(X) := xdQ(1/X)

in Qp have p-adic valuation less than or equal to h.

Definition 2.2.2. Let M be a vector space over L and U a (continuous) linear endomor-

phism of M . We say that M has a slope-≤ h decomposition with respect to U , if we can

write M := M1 ⊕M2, where both M1,M2 are stable under the action of U and

(a) M1 is finite dimensional over L;

(b) the polynomial det(1−XU |M1) is of slope-≤ h;

(c) for any polynomial P of slope-≤ h, the restriction of P ∗(U) toM2 is an automorphism

of M2.
2This is contrary to Serre’s convention in [Ser62Ser62].
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Lemma 2.2.3. Let M,N be L-vector spaces, and let U, V be endomorphisms of M,N

respectively. If M = M1 ⊕M2 and N = N1 ⊕N2 are slope-≤ h decompositions with respect
to U, V respectively, and f : M → N is a (continuous) L-linear map such that f ◦U = V ◦f ,
then f(Mi) ⊂ Ni for i = 1, 2.

Proof. See [Urb11Urb11, Lemma 2.3.2].

Setting M = N and f = id gives us uniqueness of the slope-≤ h decomposition,

which means that there is no problem in defining M≤h := M1 and M>h := M2 for

M1,M2 as above. Moreover, note that for h′ ≥ h, if M has a slope-≤ h′ decomposition,

then it also has a slope-≤ h decomposition and there is a U stable decomposition

M≤h
′

= M≤h ⊕M>h,≤h′ .

Remark 2.2.4. It is easy to see that if M has a slope-≤ h decomposition with respect to

U , then for α ∈ L, V = αU gives a slope-≤ h+ valp(α) decomposition and

M(U)≤h = M(V )≤h+valp(α),

where M(X) denotes the slope decomposition of M with respect to X .

Definition 2.2.5. We say that M has a slope decomposition with respect to U , if there is

a sequence of rationals hn going to infinity (hence for any such sequence), such that M

has a slope-≤ hn decomposition for all n ∈ N.

Notation 2.2.6. We set det(1−XU |M ) := limn det(1−XU |M≤hn ). Note that the limit

exists in LJXK and it does not depend on the sequence (hn).

Proposition 2.2.7. Let M have a slope decomposition with respect to U and M ′ ⊂M be a

U -stable subspace of M . Then M ′ has a slope decomposition if and only if M/M ′ also has a

slope decomposition and furthermore

det(1−XU |M ) = det(1−XU |M ′) det(1−XU |M/M ′).

Proof. See [Urb11Urb11, Corollary 2.3.5].

Now we switch from vector spaces M to ON-able Banach A-modules, where A is

a topologically finitely generated Qp-Banach algebra. But note (as in [Urb11Urb11, Section 2])

that the theory we are about to develop works just as well when M is a compact p-adic

Fréchet space, which we recall is a p-adic topological vector space V which is the limit of

p-adic Banach space Vn, such that the transition maps Vn → Vm for n > m are compact

(defined below).
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Definition 2.2.8. Let M be an ON-able Banach A-algebra. We call an operator U

compact (or completely continuous) if there exists a sequence of projective and finitely

generated Banach A-modules Mi, such that Ui := U |Mi converges (with respect to the

operator norm) to U as i→∞.

In the case when our moduleM is ON-able, then we can use the matrix associated

to the operator to ‘see’ when an operator is compact as follows.

Proposition 2.2.9. Let M,N be ON-able Banach A-modules with ON -bases {ei|i ∈ I}
and {fj |j ∈ J} respectively. Let φ : M → N be a continuous A-module homomorphism with

matrix (ai,j). Then φ is compact if and only if lim
i→∞

supj∈I |ai,j | = 0.

Proof. This is [Buz07Buz07, Proposition 2.4].

Definition 2.2.10. Let M,Mi and Ui be as in Definition 2.2.82.2.8. We define the Fredholm

determinant as

FredM (U) = det(1−XU |M ) := lim
i

det(1−XUi).

Definition 2.2.11. If A is a local ring with maximal ideal m and F (X) ∈ AJXK. Then F
is called entire over A if the n-th coefficients of F lies in mcn for some cn ∈ Z such that

cn/n tends to ∞.

Theorem 2.2.12. Let A,M and U be as above, then FredM (U) is an entire power series

with coefficients in A.

Proof. This follows from [Ser62Ser62, Proposition 7].

Definition 2.2.13. If we can write FredM (U) = Q(X) ·R(X), where Q is a multiplicative

polynomial of slope-≤ h and R(X) ∈ AJXK is an entire power series of slope > h

(meaning its Newton polygon has all of its slopes greater that h), then we say that

FredM (U) has a slope-≤ h factorization.

Proposition 2.2.14. With the notation as above, M has a slope-≤ h decomposition if and

only if FredM (U) admits a slope-≤ h factorization.

Proof. See [Buz07Buz07, Theorem 3.3].

Note that the slope-≤ h factorization of FredM (U) = Q(X)R(X) gives the

slope-≤ h decomposition on M by setting M≤h = {m ∈M | Q∗(U) ·m = 0}.
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Definition 2.2.15. For M as above with a slope decomposition with respect to U , let

Mfs =
⋃
h<∞

M≤h,

which we call the finite slope part of M .

2.3 The spectral variety

We begin by recalling the following definitions from rigid geometry.

Definition 2.3.1. If R is an affinoid integral domain, we say that R is relatively factorial

if for any f ∈ R〈X〉 (which is the space of convergent power series with coefficients in R)

with constant term 1, the ideal (f) factors uniquely as a product of principal prime ideals,

where each prime ideal can be chosen to be generated by an element of constant term 1.

Furthermore, we say that a rigid analytic space is relatively factorial if it has an admissible

covering by relatively factorial affinoids.

Definition 2.3.2. If W is a relatively factorial rigid analytic space and i :W × {0} ↪→
W × A1 is the natural map, inducing a map i∗ : O(W × A1)→ O(W), then a Fredholm

series is a global section f ∈ O(W × A1) such that i∗(f) = 1. The subspace of W × A1

cut out by a Fredholm series is called a Fredholm hypersurface.

Proposition 2.3.3. If f is a Fredholm series and Z (f) is the Fredholm hypersurface it

defines, then the natural map W ×A1 →W induces a map Z →W whose image is Zariski

open inW .

Proof. See (for example) [Han17Han17, Proposition 4.1.3].

Definition 2.3.4. Let U ⊂ W be an affinoid and Z (f) a Fredholm hypersurface. Define

ZU,h = O(U)〈phX〉/(f(X)),

which we view as an admissible affinoid open subset of Z (f). We have a natural map

ZU,h → U, which is flat but might not be finite. We say that ZU,h is slope-adapted if the

above map is finite and flat.

It is possible to show that ZU,h is slope-adapted if and only if f |U admits a

slope-≤ h factorization f |U(X) = Q(X)R(X), from which it follows that O(ZU,h) =

O(U)[X]/(Q(X)). Then, [Buz07Buz07, Theorem 4.6] tells us that the collection slope-adapted

affinoids is an admissible cover of Z (f). It is this fact that allows us to construct

eigenvarieties.
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2.4 Eigenvarieties

In order to define an eigenvariety X , we need to specify the eigendata to which it is

associated. The constructions is originally due to Coleman-Mazur and Buzzard, but has

been extended by Urban and Hansen among others.

We begin by specifying the eigendata as defined [Buz07Buz07] to which one can attach

an equidimensional eigenvariety, by using Buzzard’s eigenmachine. Later we will use this

eigenmachine to construct eigenvarieties attached to D/F totally definite or GL2/F as

in [Buz07Buz07, AIP16bAIP16b].

More generally, Hansen has given a more general construction of eigenvarieties,

which can be use to construct eigenvarieties associated to reductive groups by using over-

convergent cohomology. These more general eigenvarieties may not be equidimensional.

We will recall this more general construction and later use this to construct eigenvarieties

attached to any quaternion algebra D/F .

2.4.1 Buzzard’s Eigenmachine

We begin by recalling some definitions from [Buz07Buz07].

Definition 2.4.2. Let M1,M2 be Banach R-modules satisfying (Pr) for R a reduced

affinoid and TTT a commutative R-algebra with maps ψi : TTT → EndR(Mi). Let U ∈ TTT act

compactly on both M1 and M2. A continuous R-module and TTT -module homomorphism

α : M1 →M2 is called a primitive link if there is a compact R-linear and TTT -linear map

c : M2 →M1 such that ψ2(U) : M2 →M2 is α◦ c and ψ1(U) : M1 →M1 is c◦α. More

generally a continuous R-module and TTT -module homomorphism α : M ′ →M is a link

if there exists a sequence Mi of Banach R-modules satisfying (Pr) for i ∈ {0, . . . , n}
such that M ′ = M0, M = Mn and α factors as a compositum of maps αi : Mi →Mi+1

with αi a primitive link.

Definition 2.4.3. Let W be a reduced rigid space, R a reduced affinoid and TTT be a

commutative R-algebra with a specified element U . For admissible affinoid open U ⊂ W
let M(U) a Banach O(U)-module satisfying (Pr) with an R-module homomorphism

ψU : TTT → EndO(U)(MU) such that ψU(U) is compact. Finally assume that if U ⊂ U′ ∈ W
are two admissible affinoid opens, then there is a continuous O(U)-module homomorphism

α : MU → MU′⊗̂O(U′)O(U) which is a link and such that if U1 ⊂ U2 ⊂ U2 ⊂ W are all

affinoid subdomains then α13 = α23 ◦ α12 for αij : MUi →MUi⊗̂O(Ui)O(Uj).

We give the name of eigendata or eigenvariety data, to tuple E = (W,M ,TTT , U)

where M is the coherent sheaf defined by the MU.
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Definition 2.4.4. For U as above, define the spectral variety associated to U , denoted

Z (U) as the closed subspace of W × A1 cut out be the Fredholm determinant of U .

With this we have the following theorem of Buzzard:

Theorem 2.4.5 (The Eigenmachine). Attached to E = (W,M ,TTT , U) there is a canoni-

cally associated rigid space X (E) with a finite morphism to the spectral variety Z (U) defined

by U and whose points over z ∈ Z (U) are in bijection with the generalized eigenspace for the

action of TTT on the fibre Mz . Moreover, if W is equidimensional of dimension n, then so is

X (E).

Proof. This follows from [Buz07Buz07, Construction 5.7, Lemmas 5.8-5.9].

2.4.6 Hansen’s Eigenmachine

We now recall Hansen’s more general construction of eigenvarieties. For these we do not

need to have a sheaf of Banach modules satisfying (Pr) as in Buzzard’s construction, but

the resulting eigenvarieties may not be equidimensional.

Definition 2.4.7. We give the name of generalized eigendata or generalized eigenvariety

data to the tuple

D = (W,Z ,M ,TTT , ψ),

where:

1. W is the ‘weight space’, which is a separated, reduced, equidimensional, relatively

factorial rigid analytic space,

2. Z ⊂ W × A1 is a Fredholm hypersurface,

3. M is a coherent analytic sheaf on Z ,

4. TTT a commutative Qp-algebra (the Hecke algebra),

5. ψ is a Qp-algebra homomorphism ψ : TTT → EndOZ
(M ).

Theorem 2.4.8 (The Generalized Eigenmachine). Attached to the eigendata D =

(W,Z ,M ,TTT , ψ), there is a rigid analytic space X := X (D), together with a finite

morphism π : X → Z , an algebra homomorphism

φX : TTT −→ O(X ),

and a coherent sheaf M ′ on X with a canonical isomorphism π∗(M ′) ∼= M compatible

with the action of TTT . The points of X lying over z ∈ Z are in bijection with the generalized

eigenspaces for the action of TTT on Mz .
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Proof. This is [Han17Han17, Theorem 4.2.2].

2.4.9. We will construct eigenvarieties in this setting by taking some weight spaceW and

to each affinoid open U ⊂ W attaches a nuclear Frechet space H∗(YD(U),DU) . On this

space we will have a compact operator Up whose Fredholm determinant FU which one

checks (using links) is well-defined independent of s ≥ s(U) (cf. [Han17Han17, Section 3.1]) and

such that for U′ ⊂ U open we have FU |U′= FU′ , from which it follows (by Tate’s acyclity

theorem) that there is a ‘global’ F such that FU = F |U. The spectral variety Z is then

given by the zero locus of F in W × A1.

In order to construct the coherent sheaf M on Z one simply defines M (ZU,h) =

H∗(YD(U),DU)≤h for ZU,h a slope-adapted affinoid, which one can then glue to get a

coherent sheaf on Z (cf. [Han17Han17, Section 4.3]).

Remark 2.4.10. The main difference between eigenvarieties constructed via the eigenma-

chine compared to the generalized eigenmachine is the support of the relevant system

of Banach or Frechet modules. In Buzzard’s eigenmachine they are Banach modules

satisfying (Pr) and are supported on all of Z (U) while in Hansen’s construction one

allows more general nuclear Frechet spaces which are supported on a subspace of Z of

possibly positive codimension (cf. [Han17Han17, Section 1.1 and Section 4.4]).

Remark 2.4.11. One can obtain a set of generalized eigendata from Buzzard’s eigendata

E = (W,M ,TTT , Up) by defining D = (W,Z (U),M ,TTT , ψ) where Z (U) is as in Defini-

tion 2.4.42.4.4 and ψ : TTT → EndOZ (U)
(M ) the algebra homomorphism naturally defined by

the ψU as in Definition 2.4.32.4.3. The resulting eigenvariety coincides with the one given by

Buzzard’s eigenmachine.

2.5 The Interpolation Theorem

In this section we begin by recalling Chenevier’s interpolation theorem, which is used

to construct closed immersions between eigenvarieties (as constructed by Buzzard’s

eigenmachine) which interpolate ‘classical maps’, a process which is referred to as p-

adic Langlands functoriality. We will use this to interpolate the Jacquet-Langlands

correspondence. For this we will need to find a very Zariski dense subset (see Definition

2.5.22.5.2) of the weight space, together with a classical structure on it. As the name suggests,

the classical structure will be given by the subspace of classical modular forms inside

the space of overconvergent modular forms. We then use this to find closed immersions

between different eigenvarieties by relating their classical structures. In our case, it will be
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the classical Jacquet-Langlands correspondence that will allow us to relate the classical

structures.

In order to construct maps between eigenvarieties using the generalized eigenma-

chine we will need a more general version of this interpolation theorem due to Hansen,

which we will use in Section 6.26.2.

Definition 2.5.1. A subset X ⊂ Z is Zariski dense in Z if for every analytic subset (see

[BGR84BGR84, Section 9.5.2]) Y ⊂ Z such that X ⊂ Y , then Y = Z .

Definition 2.5.2. A Zariski dense subset X ⊂ W is very Zariski dense if for each x ∈ X
and every affinoid open V ⊂ W containing x, V ∩X is Zariski dense in each irreducible

component of V containing x.

From this we define the classical structures as follows.

Definition 2.5.3. Let E = (W,M ,TTT , U) be a set of eigendata as above and let X ⊂ W
be a very Zariski dense subset. For each x ∈ X , let M cl

x be a finite dimensional TTT -module

contained in Mx and, for every h ∈ R, set Xh = {x ∈ X |M≤h
x ⊂M cl

x }. We say that

M cl gives a classical structure on X if for every open affinoid neighbourhood V ⊂ W and

every h, the sets X ∩ V,Xh ∩ V have the same Zariski closure in V .

Definition 2.5.4. If X is an eigenvariety, with eigendata E = (W,M ,TTT , U), we denote

the nilreduction of X by X red, and we say that an eigenvariety is reduced if X red ∼= X .

With these definitions we can now state the Chenevier’s Interpolation theorem.

Theorem 2.5.5. (Chenevier) Let Xi be eigenvarieties associated to the eigendata of Ei =

(Wi,Mi,TTT i, ψi), for i = 1, 2 withW =W1 =W2 and TTT = TTT 1 = TTT 2. Let X ⊂ W a very

Zariski dense subset such that M cl
i is a classical structure on X for each Mi. Assume that,

for all t ∈ TTT and all x ∈ X , we have

det
(

1− ψ1(tU)Y |M cl
1,x

)
divides det

(
1− ψ2(tU)Y |M cl

2,x

)
in k(x)[Y ], where k(x) is the residue field at x. Then, there is a canonical closed immersion

ι : X red
1 ↪→X red

2 such that the following diagrams commute

X red
1
� � ι //

��

X red
2

||

W

TTT
φred1 //

φred2

��

O(X red
1 )

O(X red
2 )

ι∗

::
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Proof. See [Che05Che05, Theorem 1].

Corollary 2.5.6. If det
(

1− ψ1(tU)Y|M cl
1,x

)
= det

(
1− ψ2(tU)Y|M cl

2,x

)
in k(x)[Y ] for

all t ∈ TTT and all x ∈ X , then there is an isomorphism X red
1
∼= X red

2 .

Proof. In this case the above Theorem gives us two closed immersions ι12 : X red
1 ↪→

X red
2 and ι21 : X red

2 ↪→ X red
1 , from which the result follows at once by noting that

ι12ι21 = IdX2 and ι21ι12 = IdX1 .

We now have a result of Chenevier that gives a criterion for an eigenvariety to be

reduced. Suppose that X ⊂ W is a very Zariski dense subset giving a classical structure.

For h ∈ R, let Xss
h = {x ∈ X |M cl

x ∩M≤h
x is a semisimple TTT -module}.

Lemma 2.5.7. If for all h ∈ R, x ∈ X and V ⊂ W an open affinoid containing x, there

exists W ⊂ V an open affinoid containing x, such that Xss
h ∩W contains an open Zariski

dense subset of X ∩W , then X is reduced (here we view X ∩W as a topological subspace of

W with the Zariski topology).

Proof. See [Che05Che05, Proposition 3.9].

Now for more general eigenvarieties as constructed in using Hansen’s eigenmachine

we have a more general interpolation theorem. Before stating it, we need to recall some

definitions from [Han17Han17].

Definition 2.5.8. Let X = X (D) be an eigenvariety attached to a generalized eigen-

datum of D = (W,Z ,M ,TTT , ψ). The core X o of X is defined the union of the

dim(W)-dimensional irreducible components of X red regarded as a closed subspace of

X and let Z o be the subspace of Z of points whose preimage in X meets X o. An

eigenvariety is called unmixed if X o ∼= X .

Remark 2.5.9. Note that eigenvarieties constructed using Buzzard’s eigenmachine will be

unmixed if they are reduced.

Theorem 2.5.10 (Hansen). Let Xi be eigenvarieties associated to the generalized eigendata

Di = (Wi,Zi,Mi,TTT i, ψi) for i = 1, 2 with TTT = TTT 1 = TTT 2 together with:

1. A closed immersion j :W1 ↪→W2.
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2. A very Zariski dense subset Z cl ⊂ Z o
1 with image in Z2 under the map induced by j

and such that for all t ∈ TTT and all z ∈ Z cl

det
(

1− ψ1((tU))Y |M cl
1,z

)
divides det

(
1− ψ2(tU)Y |M cl

2,z

)
in k(z)[Y ].

Then j induces a closed immersion Z o
1 ↪→ Z2 and there is a canonical closed immersion

ι : X o
1 ↪→X2 such that the following diagrams commute

X o
1
� � ι //

��

X2

��

W1
� � j

//W2

TTT
φo1 //

φ2

��

O(X o
1 )

O(X red
2 )

ι∗

::

Proof. This is [Han17Han17, Theorem 5.1.2].

Remark 2.5.11. Recently, Johansson-Newton [JN17JN17, Section 3.1] have given a more general

version of this interpolation theorem for "adic" eigenvarieties.
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Part II

The overconvergent

Jacquet-Langlands correspondence
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In this section we begin by studying classical Hilbert modular forms in detail and

understanding the action of Hecke operators by using q-expansions. We then give a more

geometric definition (a la Katz) of these spaces, which naturally generalizes to the p-adic

setting and is the basis for defining overconvergent Hilbert modular forms as defined

in [AIP16bAIP16b]. From this one constructs eigenvarieties associated to Hilbert modular form,

which we will denote by XG(U), for U an appropriate level.

We then define quaternionic modular forms in the p-adic setting for a totally defi-

nite quaternion algebra and define overconvergent quaternionic modular forms following

[Buz07Buz07]. We also prove a control theorem in this setting and construct eigenvarieties

XD(U).

Similarly, we define eigenvarieties associated to overconvergent cohomology groups

on any quaternion algebra D. In this case one does not need to worry about moduli

problems being representable (in contrast to the Hilbert modular form case).

Lastly, using the Interpolation theorem we show that, if |F : Q| is even and

Disc(D) = 1, then XD(U) ∼= XG(U). More generally, using overconvergent cohomology,

we obtain closed immersions between eigenvarieties associated to any quaternion algebra

D by using Hansen’s interpolation theorem.
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Chapter 3

Hilbert modular forms

In this chapter we begin by recording some classical results about Hilbert modular

forms. We will start by making explicit the definition of Hilbert modular forms by setting

D = M2(F ) in Definition 1.2.91.2.9. We will then discuss their q-expansions and study the

action of Hecke operators on these spaces; in particular, we record some ‘Atkin-Lehner

type’ results. We will also give a more geometric constructions of these spaces, which

naturally generalize to the p-adic setting. Much of this material is well-known and there

are many sources, see [Hid88Hid88, Shi78aShi78a, SW93SW93, Dim03Dim03, Gar90Gar90].

We will then recall the definition of overconvergent Hilbert modular forms given

by [AIP16bAIP16b] which are used to construct eigenvarieties associated to cuspidal Hilbert

modular forms.

3.1 Complex Hilbert modular forms

Notation 3.1.1. (1) Let U be an open compact subgroup of G(Af ).

(2) In this section we set J = ΣM2(F ) = Σ∞ (by Proposition 1.4.41.4.4, we can restrict to this

case without loss of generality).

(3) Note that C+
∞ = (R×SO2(R))Σ∞ and we write the elements of SO2(R)Σ∞ as

u(θ) =

(
cos(2πθv) sin(2πθv)

− sin(2πθv) cos(2πθv)

)
v∈Σ∞

for some θ = (θv)v ∈ RΣ∞ .

(4) Let I∞ be the F -modulus consisting of the product of all archimedean places of F .

(5) Let ti = tiÔF ∩ F be as in 1.3.31.3.3.
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Let us now unravel Definition 1.2.91.2.9 in this setting.

Definition 3.1.2. The C-vector space of cuspidal complex Hilbert modular forms of weight

(k, r) and level U , denoted Sk,r(U) is given by functions f : G(A)→ C such that

(a) f(γgu) = f(g) for all γ ∈ G(Q), g ∈ G(A) and u ∈ U .

(b) For u∞u(θ) ∈ C+
∞ and g ∈ G(A) we have

f(gu∞u(θ)) = u−r∞ exp

(
2πi

( ∑
v∈Σ∞

kvθv

))
f(g).

(c) For each x ∈ G(Af ), the function fx defined (as in Definition 1.2.91.2.9 (c)) is holomorphic

in the variable zv for all v ∈ Σ∞.

(d) For all g ∈ GD(A) and for each additive Haar measure dx.

∫
F\AF

f

([
1 x

0 1

]
g

)
dx = 0.

3.1.3 Fourier expansions

Since we are in the GL2-case, our modular forms have q-expansions which are of great

use when studying the action of Hecke operators. In order to give the q-expansions of

Hilbert modular forms we will first decompose our spaces.

Definition 3.1.4. Let U be an open compact subgroup of G(Af ), with det(U) = ÔF
×

and let Γi(U) be as in 1.3.41.3.4. Let (k, r, n, v, w) be a weight tuple. We define Sk,r(Γi(U))

to be the space of functions

f : HΣ∞ −→ C

such that

f(γ(z)) = j(γ, z)k det(γ)−wf(z)

for all γ ∈ Γi(U) and is holomorphic in zv for all v ∈ Σ∞. Moreover, we assume that f

vanishes at all cusps of Γi(U).

Proposition 3.1.5. The map f 7→ (fti)i with the notation as in Definition 1.2.91.2.9 (c), gives an

isomorphism

Sk,r(U) ∼=
h⊕
i=1

Sk,r(Γ
i(U)).

Proof. See [Shi78bShi78b, Section 2].
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We now give a special case of Proposition 3.1.53.1.5 which will be useful later on.

Corollary 3.1.6. Let Γ0(b, n) = GL2(F )+ ∩
(
OF b∗

bndF OF

)
and

Γ1(b, n) =
{(

a b
c d

)
∈ Γ0(b, n) | d ≡ 1 mod n

}
then

Sk,r(U1(n)) ∼=
h⊕
i=1

Sk,r(Γ1(bi, n)),

where b∗i = ti.

Notation 3.1.7. When needed we will denote elements of Sk,r(U) as f and elements of

Sk,r(Γ
i(U)) as fi. Moreover, using the proposition above we write f = (f1, . . . , fh) since

(f1, . . . , fh) determines f by setting f(γtiu) = fi|u∞(i) where γ ∈ G(Q), u ∈ U and

i = (
√
−1, . . . ,

√
−1).

Remark 3.1.8. It is important to note that the Hecke action preserves the spaces Sk,r(U)

but not the spaces Sk,r(Γi(U)). Specifically, given UxU for x ∈ G(A) one can find, for

each i, an element αi such that UxU = Ut−1
i αitjU where j is uniquely determined by

the condition that det(x)tit
−1
j ÔF ∩ F is principal modulo I∞. If f = (f1, . . . , fh), then

f|[UxU ] = (g1, . . . , gh), where gj = fi|[Γi(U)αiΓ
j(U)].

Let U = U∗(n) and let f ∈ Sk,r(U) with f = (f1, . . . , fh). Now each fi admits a

Fourier expansion of the form

fi(z) =
∑
ξ∈b+

i

ci(ξ)eF (ξz),

where b∗i = ti, eF := eQ ◦ TrF/Q : AF /F → C∗, with TrF/Q is the usual trace on the

adeles and eQ is the additive character determined by eQ(x) = exp(2πix) if x ∈ R,
ker(eQ |Ql) = Zl for l a prime and eQ(q) = 1 for q ∈ Q.

Remark 3.1.9. Note that if ε ∈ O×,+F , then ci(εξ)ε
w = ci(ξ) if ( ε 0

0 1 ) ∈ Γi(U) and

ci(ε
2ξ)εk = ci(ξ) if

(
ε 0
0 ε−1

)
∈ Γi(U). In particular, ci(ξ)ξv for ξ 6= 0 depends only on

the ideal ξOF since v + w = r + 1 is parallel.

Definition 3.1.10. Let f = (fi)i, then we can define a function on the group of fractional

ideals by setting

a(m, f) =

ci(ξ)ξv if m = ξti and m is integral,

0 otherwise.
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These will be our Fourier coefficients of our Hilbert modular forms f. In fact, one

has the following expansion (which follows from [Shi78aShi78a, (2.18)])

f (( y x0 1 )) =
∑
ξ∈F×+

a(ξyOF , f)(ξy∞)weF (ξiy∞)eF (ξx).

We now define the Petersson inner product on these spaces.

Definition 3.1.11. Let f, g ∈ Sk,r(Γi(U)) then we define

〈f, g〉 = µ(Γi(U)\Hg)−1

∫
Γi(U)\H

f(z)g(z)ykdµ(z)

where zv = xv + iyv, dµ(z) =
∏

v∈Σ∞
y−2
v dxvdyv and µ(Γi(U)\Hg) is the measure of a

fundamental domain for Γi(U)\Hg with respect to dµ(z). Moreover, for f = (fi)i, g =

(gi)i set

〈f, g〉 =

h∑
i=1

〈fi, gi〉.

3.1.12 Level U0(n) and U1(n) Hilbert modular forms

We now restrict our level structure to U0(n) and U1(n) for n and integral ideal. Note that

U0(n)/U1(n) ∼= (OF /n)× therefore U0(n) acts on Sk,r(U1(n)) by f 7→ f|u for u ∈ U0(n).

If ψ (or ψn if we want to keep track of the modulus) is a character of (OF /n)× extended

to U0(n) by setting ψ
(
a b
c d

)
= ψ(dn) (where dn is the image in On of d) and we let

Sk,r(U0(n), ψ) = {f ∈ Sk,r(U1(n)) | f(gu) = ψ(u)f(g) for all g ∈ G(A), u ∈ U0(n)}

then the following proposition is immediate.

Proposition 3.1.13. There is a decomposition Sk,r(U1(n)) =
⊕

ψ Sk,r(U0(n), ψ) where the

sum is over characters of (OF /n)×.

Remark 3.1.14. Note that if ψ is trivial then Sk,r(U0(n), ψ) = Sk,r(U0(n)).

Now, as we observed in Remark 3.1.83.1.8, the decomposition in Corollary 3.1.63.1.6 is not

preserved by the Hecke action. To solve this problem we introduce Hecke characters Ψ

of F extending ψn with infinity type −(r, . . . , r), i.e., Ψ(x) = x−r for all x ∈ F∞ and

Ψ = ψ on ÔF . Let

Sk,r(n,Ψ) = {f ∈ Sk,r(U1(n)) | f(gz) = Ψ(z)f(g) for all g ∈ G(A), z ∈ A∗F } .
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Then we have

Sk,r(U1(n)) =
⊕

Ψ

Sk,r(n,Ψ)

where the index runs over Hecke characters Ψ with infinity type −r and conductor

dividing n (of which there are only finitely many). Moreover, this decomposition is

preserved by the Hecke operators TTT (U1(n)) see [Shi78aShi78a, Section 2] or [Dim03Dim03, Section

4.1].

Remark 3.1.15. It follows from the above that Sk,r(U0(n), ψ) =
⊕

Ψ Sk,r(n,Ψ) where

the sum is over all Hecke characters Ψ extending ψ with infinity type −r.

3.2 Atkin-Lehner theory

We now study the action of Hecke operators on Hilbert modular forms of level U1(n) and

U0(n). For this we begin by defining the relevant Hecke rings.

3.2.1 Hecke operators

For U = U0(n) or U1(n), let TTT (U,∆(n)) be the Hecke ring as in Definition 1.4.21.4.2. For

a ⊂ OF and b - n, define

Ta =
∑

x∈D(a)

[UxU ] and Sb =
[
U
(
b 0
0 b

)
U
]

where D(a) = {x ∈ ∆(n) | det(x)OF = a} and bOF = b. Then one can show that

Ta, Sb generate TTT (U,∆(n)), in fact, we can be more explicit: let v be a finite place of F

and let πv be a local uniformizer of Ov. Then for v - n define Sv =
[
U
(
πv 0
0 πv

)
U
]
and

define Tv =
[
U
(
πv 0
0 1

)
U
]
. If w|n we define Uw =

[
U
(
πw 0
0 1

)
U
]
. Then one can check that

TTT (U,∆(n)) is generated by Sv, Tv, Uw and for r,m integral ideals

TrTm =
∑

r+m⊂a
NF/Q(a)SaTa−2rm

(cf. [Shi94Shi94, Chapter 3]).

Notation 3.2.2. Following Hida, in the case that the weight k is not parallel (i.e. v 6= 0), it

is common to re-normalize the Hecke operator by setting T 0
p = π−vp Tp and S0

q = π−2v
q Sq.

This normalization is to ensure ‘integrality’ later on, but will not be needed for the results

in this section.

We now explicitly write down the action of Hecke operators on the Fourier

coefficients.
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Notation 3.2.3. For Ψ a Hecke character of conductor nI∞, let Ψ∗ be the ideal character

defined modulo nI∞ such that Ψ∗(p) = Ψ(πp) if p - n and is zero otherwise (even if Ψ is

the trivial character).

Proposition 3.2.4. Let f ∈ Sk,r(n,Ψ), then

a(r, f|Tm) =
∑

r+m⊂b
Ψ∗(b)NF/Q(b)r+1a(b−2mr, f).

Proof. In order to make the calculation simpler we will only prove this in the special case

that F has narrow class number one.11 The extension of this case to general totally real

fields is simple since by Remark 3.1.83.1.8 we can understand the action on f by understanding

the action each of its components fi. Let m = mOF with m totally positive and, since

we are in the class number one case, we can pick t1 = 1. Then f(γt1u) = f |u∞(i) for

γ ∈ G(Q), u ∈ U , so we can simply work with f . Then

f | Tm =
∑
a,d

(ad)=m
(d,n)=1

∑
b∈(OF /d)

f |
(
a b
0 d

)
=:
∑

b∈(OF /d)

′
f |
(
a b
0 d

)

Now, the Fourier expansion of f is given by

f(z) =
∑
ξ∈O∗F

c(ξ) exp(2πiTr(ξz)).

So, if we let

C(ξ) = mw+1−k
∑
d|m

ξ/d∈O∗F

Ψ(d)dk−1c(ξm/d2),

then

f |Tm(z) =
∑
ξ

c(ξ)
∑
b

′
Ψ(d)mwd−k exp(2πiTr(ξza/d)) exp(2πiTr(ξb/d)) (?)

=
∑
ξ

c(ξ)mw
∑
d|m

ξ/d∈O∗F

Ψ(d)d1−k exp(2πiTr(ξmz/d2)) (m)

=
∑
ξ′

C(ξ′) exp(2πiTr(ξ′z)) ( )

1Note that the general result is stated in [Shi78aShi78a, (2.23)].
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where we note that (m) follows from the fact that

∑
b

exp(2πiTr(ξb/d)) =

NF/Q(d) = d1 if ξ/d ∈ O∗F ,

0 otherwise,

and ( ) follows from replacing d with m/d. The result then follows by observing that

a(ξOF , f) = a(ξ)ξv and that w + 1− k = v and k + 2v − 1 = r + 1.

Remark 3.2.5. If one uses Notation 1.2.81.2.8, then r + 1 = k0 − 1 which in the above

proposition we recover the more standard normalizations for this result.

Proposition 3.2.6. Let 〈−,−〉 denote the Petersson inner product. Then, for f, g ∈ Sk,r(n,Ψ)

we have

Ψ∗(p)〈f|Tp, g〉 = 〈f, g|Tp〉 for all (p, n) = 1.

Proof. See [Shi78aShi78a, Proposition 2.4].

3.2.7. It follows at once that if f ∈ Sk,r(n,Ψ) is such that f|Tm = λ(m)f for (m, n) = 1

then λ(m) = Ψ∗(m)λ(m), where a denotes the complex conjugate of a. Moreover, note

that the Hecke operators at an ideal not dividing the level will be normal (i.e. commute

with their adjoints) from which it follows that they act semisimply, a fact which we will use

later on.

3.2.8 Newforms and oldforms

We now want to define the old and new subspaces of Hilbert modular forms.

Definition 3.2.9. Let ιq : Sk,r(n,Ψ)→ Sk,r(nq,Ψ) be such that a(m, ιq(f)) = a(mq−1, f)

(recall that a(b, f) = 0 if b is not integral), then this property alone uniquely determines

the operator. Furthermore, suppose the (finite part of the) conductor of Ψ, denoted cΨ,

divides n, then we also have canonical injections ι : Sk,r(n,Ψ)→ Sk,r(m,Ψ).

Definition 3.2.10. Let q be a prime ideal in OF and Ψ a Hecke character of conductor

cΨ dividing n. We call the image of Sk,r(n,Ψ) under ιq and ι the q-old subspace of

Sk,r(nq,Ψ) and we denote it by

Sq-old
k,r (nq,Ψ).

With this we define q-new subspace

Sq-new
k,r (nq,Ψ)
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to be the orthogonal complement (with respect to the Petersson inner product) of

Sq-old
k,r (nq,Ψ) in Sk,r(nq,Ψ). Similarly, for m any integral ideal of OF , we can define

the subspace of m-old and m-new forms, by setting

Sm-old
k,r (nm,Ψ) =

⊕
q|m

Sq-old
k,r (nm,Ψ),

and defining the space of m-new forms to be its orthogonal complement. Lastly, we denote

by Sold
k,r(n,Ψ) the subspace of Sk,r(n,Ψ) generated by ιq(f) for f ∈ Sk,r(b,Ψ) for all b

such that cΨ | b and b | n (b 6= n) and q runs over all divisors of b−1n and Snew
k,r (n,Ψ) is

its orthogonal complement.

Before moving on to the Atkin-Lehner theory we first state a result which will be

useful later on.

Proposition 3.2.11. Let (n, p) = 1. The matrix for the action of Up on S
p-old
k,r (np,Ψ) is

given by (
Tp 1

−Ψ∗(p)N(p)r+1 0

)
.

Proof. First note that the map

Sk,r(n,Ψ)2 −→ Sp-old
k,r (np,Ψ)

(f,g) 7−→ ι(f) + ιp(g)

induces an isomorphism of Hecke modules. The result then follows by noting that

ιp(g)|Up = ι(g) and using Proposition 3.2.43.2.4.

We now recall some ‘Atkin-Lehner type’ results for Hilbert modular forms.

Definition 3.2.12. We call f ∈ Snew
k,r (n,Ψ) a primitive newform if a(OF , f) = 1 and it is a

simultaneous eigenform for all Tp for p a prime ideal with (p, n) = 1.

Theorem 3.2.13. Let b ⊂ OF be a fixed integral ideal and f ∈ Sk,r(n,Ψ) be such that

a(m, f) = 0 for all (m, b) = 1 then f ∈ Soldk,r(n,Ψ).

Proof. This is stated in [SW93SW93, Theorem 3.1], but the actual proof is a generalization of

[Li75Li75, Section 2, Theorem 2 and Corollary 1].

Corollary 3.2.14. If f ∈ Snewk,r (n,Ψ) then f is uniquely determined (up to a scalar multiple)

by its eigenvalues.

Proof. This follows at once by noting that if f and g are both eigenforms for Tp for all p

prime with (p, n) = 1 then f− g ∈ Sold
k,r(n,Ψ).
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In fact, we have a much stronger version of this given by the following theorem:

Theorem 3.2.15. Let f ∈ Sk,r(n,Ψ) and g ∈ Sk,r(m,Φ) be primitive newforms and assume

that they have the same eigenvalues for all Tb with (b, nm) = 1 then Ψ = Φ, n = m and

f = g.

Proof. This is [SW93SW93, Theorem 3.6].

For any p prime ideal with (p, n) = 1 the Hecke operators Tp preserve Snew
k,r (n,Ψ),

therefore one can find a orthogonal basis of eigenforms for the Tp. Moreover, using

Proposition 3.2.43.2.4 one gets, as in the case of modular forms over Q, that if f is a primitive

newform, then f|Tp = a(p, f)f for all (p, n) = 1.

Theorem 3.2.16. Let f ∈ Sk,r(n,Ψ) be a primitive newform and let Ψ have conductor c.

Then for p | n we have:

(a) If np = cp then | a(p, f) |= NF/Q(p)(k0−1)/2.

(b) If np = p and cp = 1 then a(p, f)2 = Ψ(p)NF/Q(p)(k0−2).

(c) If p2 | n and np 6= cp then a(p, f) = 0.

Here (−)p denotes the p component of the ideal.

Proof. This is [SW93SW93, Theorem 3.3].

Let n = rs with (r, s) = 1. Let Ψ be a Hecke character whose associated Dirichlet

character is ψn and write ψn = ψrψs. We now define (following [SW93SW93]) the Atkin-Lehner

involution.

Definition 3.2.17. Let Ψr be a Hecke character extending ψr (with infinity type −r) and
choose y ∈ G(Af ) with y =

(
a b
c d

)
∈
(

r O∗F
ndF r

)
and det(y)OF = r. Then define

Wr(Ψr) : Sk,r(n,Ψ)→ Sk,r(n,ΨΨ
2
r )

by

f|Wr(Ψr)(x) = Ψr(det(x))ψr(btdF )ψs(a)f(xyι),

where tdFOF = dF and yι = det(y)y−1.

This operator has many very useful properties, one of which is that it sends

newforms to newforms. These results along with many others can be found in [SW93SW93].

Lastly, we state a result which will be useful later when studying slopes.
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Theorem 3.2.18. Let r | n with (r, nr−1) = 1 and let f ∈ Sk,r(n,Ψ) be a primitive newform

with f |Wr(Ψr) = λ(f)g and g ∈ Sk,r(n,ΨΨ
2
r ) a primitive newform. Then

(a) For p a prime ideal,

a(p, g) =

Ψ
∗
r (p)a(p, f) if p - r,

(ΨΨ−1
r )∗(p)a(p, f) if p | r.

(b) | λ(f) |= 1.

Again with notation as in 3.2.33.2.3.

Proof. This is [SW93SW93, Theorem 4.2 and Lemma 4.3].

3.3 Geometric Hilbert modular forms

In this section we will (following [AIP16bAIP16b]) reformulate the definitions of the spaces of

Hilbert modular forms in a more geometric way which naturally generalizes to the p-adic

setting and is the basis for defining overconvergent Hilbert modular cusp forms.

To define the spaces of Hilbert modular forms for G = ResF/Q(GL2), we first

work with the group G∗ = G ×ResF/Q Gm Gm where G → ResF/QGm is given by the

determinant morphism and Gm → ResF/QGm is the natural diagonal morphism. We

will define the spaces of modular forms for G∗ and then, using a projector, one gets the

definition for G. The reason for working with G∗ is that the relevant moduli problem

associated to G∗ is representable while the one for G is not. We will begin by defining

these moduli problems and then show how to define the relevant spaces of modular forms.

3.3.1 Abelian varieties with real multiplication

Definition 3.3.2. Let S be a scheme. An abelian scheme A/S is a proper, smooth and

geometrically irreducible22 group scheme over S. If S = Spec(K) is a point, then A/S is

called an abelian variety over K .

It is not immediately clear that abelian schemes are commutative group schemes,

but this follows from the rigidity lemma.

Proposition 3.3.3. If A/S is an abelian scheme then it is a commutative group scheme.

Proof. See [MFK94MFK94, Corollary 6.5].
2This means that its fibre at every geometric point of S is irreducible.
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Definition 3.3.4. Let A∨ be the connected component of the identity in PicA/S . This is

called the dual abelian scheme of A.

Remark 3.3.5. The fact that A∨ is even a scheme is non-trivial in general. See [FC90FC90,

Chapter I].

Definition 3.3.6. A polarization of A/S is a homomorphism λ : A → A∨ such that

for each geometric point s of S, the induced map λs : As → A∨s is of the form

ΦL : a 7→ T ∗aL ⊗ L−1 for L some ample invertible sheaf on As, where Ta(b) = a+ b.

Definition 3.3.7. Let F be a totally real field of degree g. An abelian variety with real

multiplication (AVRM/S ) by a totally real field F is an abelian scheme A→ S of relative

dimension g together with an embedding of algebras ιA : OF ↪→ End(A/S).

Definition 3.3.8. Let c be a fractional ideal in F . For A/S an AVRM, one can define a

sheaf of OF -modules on the big étale site of S which associates to a S-scheme Y the

OF -module A(Y )⊗OF c. This functor is representable33 by an AVRM which is denoted

A⊗OF c and is characterized by

A⊗OF c =

A/A[c−1] if c−1 is integral,

(A∨ ⊗ c−1)∨ if c is integral.

Moreover, we note that ιA induces a map c ↪→ HomOF (A,A⊗OF c).

Definition 3.3.9. Let

SymOF (A,A∨) = {λ : A→ A∨ | λ = λ∨, λ ◦ ιA(r) = ιA(r)∨ ◦ λ for all r ∈ OF }

and let P (A) be the cone of polarizations in SymOF (A,A∨). A Hilbert-Blumenthal

abelian variety over S (HBAV/S ) is an AVRM A/S such that there exists a OF -equivariant
homomorphism λ : A⊗OF c→ A∨ inducing (c, c+) ∼= (SymOF (A,A∨), P (A))). Such a

λ is called a c-polarization. If λ : A⊗OF c→ A∨ is an isomorphism, we say A satisfies

the Deligne-Pappas condition.

Remark 3.3.10. If the discriminant of F in invertible in S then the Deligne–Pappas

condition is equivalent to the Rapoport condition which asks that for π : A→ S the sheaf

π∗

(
Ω1
A/S

)
is (Zariski) locally free of rank 1 over OS ⊗OF . See [Gor02Gor02, Chapter 3.5].

Definition 3.3.11. Following [Hid04Hid04], we consider the following fibered category AF ,
whose objects are triples (A, ιA, λ)/S where A is a HBAV/S with a c-polarization λ, real

3See (for example), [Dim03Dim03, Section 3.1].
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multiplication given by ιA and the fibre functor is (A, ιA, λ)/S 7→ S. The morphisms are

given by OF -linear morphisms f : A/S → A′/S of abelian schemes with λ = f∨ ◦ λ′ ◦ f .

Let us now consider the case S = Spec(C). Following [Gor02Gor02, Chapter 2, Section

2], we have the following example of an abelian variety with real multiplication by OF .

Definition 3.3.12. Let a, b be fractional ideals of OF . For τ ∈ Hg let

Λτ = a · τ + b = {a1τ1 + b1, . . . , agτg + bg | a ∈ a, b ∈ b} ⊂ Cg

where ai, bi denote the images of a, b under the corresponding embedding of F into C.
For f ∈ F and c = (c1, . . . , cg) ∈ Cg we let f · c = (f1c1, . . . , fgcg). This then defines a

complex torus Aτ = Cg/Λτ with real multiplication by OF .

Since we are over C, defining a polarization on Aτ is equivalent to giving a real

alternation form on Λτ (see [Gor02Gor02, Chapter 1, Section 6.1]).

Definition 3.3.13. Let r ∈ (ab)∗. Then define Er : a⊕ b× a⊕ b→ Z by

Er((x1, y1), (x2, y2)) = TrF/Q(r(x1y2 − x2y1)).

Now, define Er,τ : Λτ ×Λτ → Z by setting Er,τ ((aτ + b), (a′τ + b′) = Er((a, b), (a
′, b′)).

One can then show that (see [Gor02Gor02, Chapter 2, Corollary 2.10]) Er,τ defines a

polarization on Aτ if and only if r ∈ ((ab)∗)+.

3.3.14 Hilbert-Blumenthal moduli

In this section we will study the following moduli problem:

Definition 3.3.15. Let (A, ι, λ) in AF be as in Definition 3.3.113.3.11 (so λ is a c-polarization).

Let n be a non-zero ideal and let µn denote the locally free group scheme of finite rank

given by µn(R) = {x ∈ Gm(R)⊗Z d−1
F |nx = 0}. Let n ∩ Z = (N) and let M(c, µn) be

the Hilbert moduli scheme representing the functor

Eµn : Sch /Z[1/N ] −→ Set

where Eµn(S) is the set of isomorphism classes of (A/S , ι, λ,Φn). Here Φn : µn ↪→ A[N ]/S

is a closed immersion compatible with OF -actions. We call such a Φn a µn-level structure

on A.

Remark 3.3.16. If we take µ(N) with N ≥ 3, then the associated moduli problem is

representable by a scheme M(c, µ(N)) (cf. [Gor02Gor02, Chapter 3, Theorem 6.9]).
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Let us now consider the C points of M(c, µn). These parametrize quadruples

(A, ι, λ,Φn), where A is an abelian variety over C with real multiplication by OF given

by ι, a c-polarization and a µn-level structure. We now have the following result: let

GL(a⊕ b)+ =
{
γ ∈

(
OF a−1b
ab−1 OF

)
| det(γ) ∈ O×,+F

}
act on Hg by

(
a b
c d

)
· τ =

(
aiτi+bi
ciτi+di

)
i
.

Theorem 3.3.17. (1) The isomorphism classes of (A, ι)/C such that there exists c polarisation

λ is parametrized by GL(a⊕ b)+\Hg , where (ab)∗ = c.

(2) The isomorphism classes of (A, ι)/C with a given c polarisation λ is parametrized by

SL(a ⊕ b)+\Hg, where (ab)∗ = c and SL(a ⊕ b)+ is the subgroup of GL(a ⊕ b)+ of

matrices with determinant 1.

Proof. This is [Gor02Gor02, Chapter 2, Theorem 2.17].

By fixing a set of representatives of Cl(F )+ of the form (c, c+) one can show that:

Corollary 3.3.18. (1) There is a natural bijection between isomorphism classes of (A, ι)/C
and ∐

(c,c+)

GL(OF ⊕ c)+\Hg

and (A, ι)/C is parametrized by GL(OF ⊕ c)+ if and only if there exists some c∗-

polarisation on A.

(2) There is a natural bijection between isomorphism classes of (A, ι, λ) and∐
(c,c+)

SL(OF ⊕ c)+\Hg.

Proof. This is [Gor02Gor02, Chapter 2, Corollary 2.19].

3.3.19. We now need to take into account the µn-level structure. Let N = n ∩ Z,
and let µN be the set of N -th roots of unity, which we identify with N−1Z/Z via the

exponential map. This then induces an isomorphism µ(N) = µN ⊗ d−1
F
∼= N∗/O∗F

which further induces µn ∼= n∗/O∗F . So to give a µn-level structure on Aτ we define an

inclusion Φn : n∗/O∗F ↪→ Aτ defined by Φn,τ (j mod O∗F ) = j + Λτ . So if we want

to parametrize quadruples (A, ι, λ,Φn)/C we need to find the subgroup of matrices

in SL(OF ⊕ c)+ that preserve this level structure. Now, an easy check shows that

for γ =
(
a b
c d

)
∈ G(Q)+ with γ(τ ′) = τ , multiplication by cτ ′ + d = (ciτ

′
i + di)i
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induces an isogeny (Aτ , ι, λ,Φn,τ ) → (Aτ ′ , ι,det(γ)λ, (cτ ′ + d)Φn,τ ′). Therefore, if we

set Γ1
1(c, n) = Γ1(c, n) ∩ SL2(F ) ( with notation as in 3.1.63.1.6), we see that Γ1

1(c, n)\Hg

parametrizes isomorphism classes of (A, ι, λ,Φn)/C where λ is a c-polarization. It follows

that, for n sufficiently small, M(µn, c)(C) = Γ1
1(c, n)\Hg .

Theorem 3.3.20. There is a natural bijection between isomorphism classes of (A, ι, λ,Φn)

and ∐
(c,c+)

Γ1
1(c, n)\Hg.

Proof. This follows from Corollary 3.3.183.3.18 and 3.3.193.3.19.

If instead we consider the moduli problem associated to the functor

Eµn : Sch /Z[1/N ] −→ Set

given by letting Eµn(S) be the set of isomorphism classes of (A/S , ι, λ,Φn), where λ

is a polarization class.44 One can then show that for n small enough, there is a coarse

moduli scheme MG(c, µn) representing Eµn (see [Hid04Hid04, Theorem 4.5]). In fact, over C
the quadruples are parametrized by Γ1(c, n)\Hg and using the above, one has:

Theorem 3.3.21. There is a natural bijection between isomorphism classes of (A, ι, λ,Φn)

and ∐
(c,c+)

Γ1(c, n)\Hg = Y (U1(n))

with U1(n) as in 1.3.71.3.7.

Proof. This is analogous to Theorem 3.3.203.3.20. This can also be deduced from [TX16TX16,

Proposition 2.4].

3.3.22 Geometric Hilbert modular forms for G∗ and G

From now on µn will be a level structure (as above) for which the associated moduli

problem is representable.

Notation 3.3.23. LetM(c, µn) denote the scheme representing the corresponding moduli

problem (for G∗). Denote byM(c, µn) (resp. M
∗
(c, µn)) a fixed toroidal (resp. the minimal)

compactification of M(c, µn).
4Here we say that (A/S , ι, λ,Φn) ∼= (A′/S , ι

′, λ
′
,Φ′n) if there is an isomorphism f : A → A′ with

f ◦ Φn = Φ′n and λ = f∗λ′.
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Definition 3.3.24. Let AAA be the universal semiabelian scheme over M(c, µn), with real

multiplication by OF . Let e : M(c, µn)→ AAA be the identity section and define

ωAAA = e∗
(

Ω1
AAA/M(c,µn)

)
to be the conormal sheaf of AAA.

Remark 3.3.25. By the Rapoport condition there exists a greatest open subscheme

M
R

(c, µn) ⊂M(c, µn) such that ωAAA is an invertible O
M
R

(c,µn)
⊗Z OF -module.

We will use ωAAA to define another invertible sheaf whose sections will be our Hilbert

modular forms. This sheaf will be associated to a classical weight k, from which we can

then define the spaces of Hilbert modular forms for G∗ of weight k (and appropriate level).

Since we will later be interested in constructing space of overconvergent Hilbert modular

forms, which are p-adic objects, we will define the spaces over a p-adic field (although

this construction can be done over C which recovers the definitions in Section 3.13.1).

Definition 3.3.26. We define a classical algebraic weight for G∗ as a map from T(Zp) to

Cp defined by an element k ∈ Zg≥0, as usual.

Definition 3.3.27. Let k be a classical weight for G∗. Then, define the invertible modular

sheaf

Ωk :=
⊗
v∈Σ∞

ω⊗kvAAA,v ,

where ωAAA,v := ωAAA ⊗v OL and here ⊗v denotes the tensor over OL ⊗OF via 1⊗ ιv.

Definition 3.3.28. The L-vector space of c-polarized, tame level Γ1
1(c, n) and weight k

Hilbert modular forms for G∗ is defined by

Mk(Γ
1
1(c, n)) := H0(M

R
(c, µn),Ω

k).

The subspace of cusp forms is defined by

Sk(Γ
1
1(c, n)) := H0(M

R
(c, µn,Ω

k(−B)),

where B := M(c, µn)\M(c, µn) is the boundary divisor in the toroidal compactification.

To define the spaces of Hilbert modular forms associated to G, we need to

introduce a certain projector. First, we note that, by 3.3.193.3.19, multiplication by ε ∈ O×,+F

gives an isomorphism (A, ι, λ,Φ) ∼= (A, ι, ε2λ, εΦ). Now, let Sn be the elements of O×,+F

congruent to 1 modulo n. Define an action of O := O×,+F /S2
n on M(c, µn), by

ε · (A, ι, λ,Φ) := (A, ι, ελ,Φ).
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Since multiplication by ε gives an isomorphism ε : A→ A such that ε∗λ = ε2λ, it follows

that, if ε = η2 ∈ Sn, then ε acts trivially on (A, ι, λ,Φ); hence the action factors through

O as required.

Definition 3.3.29. Let (k, r, n, v, w) be a weight tuple with (k, r) a classical algebraic

weight (for G). We define an action of O on Ωk by sending a local section f of Ωk on

MR(c, µn) to

(ε · f) : (A, ι, λ,Φ, β)→ w(ε)f(A, ι, ε−1λ,Φ, β)

where ε ∈ O×,+F and β is a local generator for ωAAA as a OMR(c,µn) ⊗ OF -module. If

ε = η2 ∈ Sn, then this acts trivially. Hence the action factors through O. With this we

define a projector

ek,r : Mk(Γ
1
1(c, n))→Mk(Γ

1
1(c, n))

by

ek,r :=
1

| O |
∑
ε∈O

ε.

We can now define the space of Hilbert modular cusp forms for G.

Definition 3.3.30. The L-vector space of classical Hilbert modular forms for G of level

Γ1(n, c), and weight (k, r) is defined to be the image of ek,r and is denotedMG
k,r(Γ1(c, n)).

Similarly, we let SGk,r(Γ1(c, n)) be the image of Sk(Γ1
1(c, n)) under ek,r.

We now have a similar situation as before, in that these spaces will not be fixed

by the Hecke operators. In fact, note that F×,+ acts on the pairs (c, c+) by ε(c, c+) =

(εc, εc+), which induces an isomorphism αε : MG
k,r(Γ1(c, n)) → MG

k,r(Γ1(εc, n)). More-

over, if ε ∈ O×,+F , then αε(f) = f for all f ∈MG
k,r(Γ1(c, n)).

Definition 3.3.31. We define the space of classical Hilbert modular forms for G of level

U1(n) and weight (k, r) denoted MG
k,r(U1(n)) as V/I where

V :=
⊕

(c,c+)

MG
k,r(Γ1(c, n))

and I = (f − αε(f))ε∈(F×,+/O×,+F ). We define SGk,r(U1(n)) similarly.

On MG
k,r(U1(n)), SGk,r(U1(n)) one can define Hecke operators as in [Hid04Hid04, Sec-

tion 4.1.10].

Remark 3.3.32. We note here that there are other ways of defining Hilbert modular forms

for G as sections of a sheaf Ωk,r on MG(c, µn) (cf. [TX16TX16, Section 2.2]). Working over

C one then recovers the spaces Sk,r(Γ1(c, n)) as defined in Corollary 3.1.63.1.6. To see the
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relationship with our definition one observes that there is a morphism m : M(c, µn)→
MG(c, µn) which is finite and Galois, with Galois group D such that Ωk,r = (m∗(Ω

k))D

(cf. [AIP16bAIP16b, Section 1]).

3.4 Overconvergent Hilbert modular forms

In this section we will give a short overview of the constructions of spaces of overcon-

vergent Hilbert modular forms together with some of their properties. The details of the

construction as well as proofs can be found in [AIP16bAIP16b].

3.4.1 The weight space

The weight space is a rigid analytic variety that allows us make precise the notion of

modular forms ‘living’ in p-adic families. We will also define the weight space for G∗ and

G and show how they are related.

Definition 3.4.2. We define WG to be the rigid analytic space over L associated to the

completed group algebra OLJT(Zp)×Z×p K. We callWG the weight space for G. Moreover,

let

[−] : T(Zp)× Z×p −→ OLJT(Zp)× Z×p K×

denote the universal character of WG.

3.4.3. It follows from the above definition that the weight space WG is the rigid analytic

space over L, representing the functor sending any L-algebra A to Homcts(T(Zp) ×
Z×p , A×). Moreover, we note that T(Zp) × Z×p ∼= H × Zg+1

p , where H is the torsion

subgroup of T(Zp)× Z×p . From this it follows that

WG ∼= H∨ ×B(1, 1)g+1 ∼=
⊔

χ∈H∨
Wχ ()

as rigid spaces, where H∨ is the character group of H and B(1, 1) is the open ball of

radius 1 around 1. It is clear from () that WG is equidimensional of dimension g + 1.

Notation 3.4.4. Elements of WG(Cp) will be given by v : T(Zp) → C×p and r : Z×p →
C×p . Setting n = −2v + r and κ = n + 2, we will continue to denote these weights as

(κ, r) and call (κ, r, n, v, w) a weight tuple if κ, r, n, v, w satisfy the same relations as

in Definition 1.2.71.2.7. More generally, if U is an affinoid with a morphism of rigid spaces

U→WG, then we will denote by (κU, rU) the restriction of the universal character to U.

Definition 3.4.5. Let (k, r, n, v, w) be a weight tuple with (k, r) ∈ ZΣ∞ × Z a classical

algebraic weight. This defines an algebraic weight by sending (a, b) ∈ T(Zp)×Z×p to avbr .
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Notation 3.4.6. There is a natural map T(Zp)→ T(Zp)× Z×p given by

t 7→ (t−2, NF/Q(t)). ()

In this way we view weights (κ, r) ∈ WG with (κ, r, n, v, w) a weight tuple as maps

T(Zp)→ Cp given by t 7→ n(t).

Definition 3.4.7. The weight space WG∗ is defined by setting WG∗ to be the rigid

analytic space over L associated to OLJT(Zp))K, where T and L are as before. There is a

canonical map WG →WG∗ induced from ().

Notation 3.4.8. Let τ denote the Teichmüller character, and for s ∈ Zg≥0 we let τ s be

the character of T(Zp)tors which is τ si on the i-th component.

Definition 3.4.9. A weight (κ, r) ∈ WG is called arithmetic or classical if it is the

product of a algebraic character and a finite character ψ. We will denote such weights

by (κ, r)ψ or simply as (κψ, r) with the understanding that we require κ, r to both be

algebraic. We will usually let ψ be a character of OL of conductor dividing ps, viewed as

a character of T(Zp) (via strong approximation).

Remark 3.4.10. In the literature there are slightly more general weight spaces than the

one we have introduced. One alternative way of defining the weight space is to let W ′

denote the rigid analytic space associated to the completed group algebra OLJT (Zp)K,
where T is the standard maximal torus of G. The problem with this weight space is

that it contains too many weights for which the associated spaces of modular forms

would be empty. For this reason one usually imposes suitable vanishing conditions on

these weights. See [Buz07Buz07, Part III] and [Urb11Urb11, 4.3.2]. The weight spaces one gets this

way conjecturally have dimension g + 1 (dependent on Leopoldt’s conjecture). For this

reason we have chosen to work with WG which has the correct dimension. Moreover,

if Leopoldt’s conjecture is true then the resulting eigenvarieties for the different weight

spaces will be isomorphic.

We will later want to study the geometric structure of the associated eigenvarieties.

For this, we define here the centre and boundary of the weight space. We begin by

thinking of the weight space as an adic space. In this setting, one defines (following

[AIP16aAIP16a]) Wadic = Spa(ΛF ,ΛF )an, where ΛF = Λ0
F [H] with Λ0

F = OLJT1, . . . , TgK.55 To

see what the boundary should be, we can restrict to the trivial component of the weight

5Note that here, for consistency, we are defining the weight space over OL, but with more care one can
work over Zp which is more customary when discussing integral models, see [AIP16aAIP16a, Section 2], but we do
not need this here.

53



space, i.e., W0 = Spa(Λ0
F ,Λ

0
F )an, where Λ0

F has the (p, T1, . . . , Tg)-adic topology (here

p is assumed unramified in F ).

Definition 3.4.11. Now define a continuous map (cf. [Sch14Sch14, Proposition 3.3.5]) c :W0 −→
[0,∞]g by

x 7−→
(

log |T1(x̃)|
log |p(x̃)|

, . . . ,
log |Tg+1(x̃)|

log |p(x̃)|

)
,

where x̃ is the maximal generalization of x. Note that log |Ti(x̃)| and log |p(x̃)| take
values in [−∞, 0) since the Ti and p are topologically nilpotent. From this it follows that

c(x) = (0, . . . , 0) if and only if |p(x̃)| = 0. Moreover, we note that we cannot have x such

that only some of the entries of c(x) are zero, i.e., we cannot have c(x) = (0, x2, . . . , xg)

with xi 6= 0. With this set-up, being near boundary of the weight space (in this component)

is the same as having a point x ∈ W0 with c(x) close to zero.

As an example of weights that are near the boundary, we can take a classical

weight (kψ, r) where ψ is a character sufficiently ramified at every prime above p. Now

a natural question is, what if we take ψ a character only ramified at some of the primes

above p? It is not clear to the author if these points should morally be in the boundary

of the weight space of in the "centre", for this reason we define a quasi-boundary (which

contains the boundary) as follows:

Definition 3.4.12. Let κ = (κ1, κ2, . . . , κg) be a weight on T(Zp) ∼= H ×Zgp. Fox a fixed

choice of h ∈ H , i.e. for a fixed component, let γi be a topological generator of the i-th

copy of Zp. Then, define w(κ) = (κi(γi)−1) ∈ Cgp. In this way we obtain a coordinate in

the weight space for each of our weights. We also set valp(w(κ)) = mini{valp(κi(γi)−1)}
and say that for an odd prime p (resp. p = 2), a weight κ is near the quasi-boundary if

valp(w(κ)) ≤ 1 (resp. val2(w(κ)) < 3), otherwise we say it is near the centre.

Later, when defining the spaces of locally analytic functions it will be convenient

for us to extend the definition of the weight space from T to T , which denotes the maximal

torus of G. We do this as follows:

Definition 3.4.13. Let (κ, r, n, v, w) be a weight tuple with (κ, r) ∈ WG and set

λκ,r

(
a 0

0 d

)
= λ1(a)λ2(d)

where λ1 = (r + n)/2, λ2 = (r − n)/2.

Remark 3.4.14. Note that if we map T (Zp) to T(Zp)× Z×p via
(
a 0
0 d

)
7→ (a/d,Norm(a))

then our weights on T and T agree.
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Remark 3.4.15. Using this, we talk about weights λ on T where we implicitly assume

that there is some (κ, r) ∈ WG such that λ = λκ,r . This construction then lets us take a

weight WG and get a weight in W ′ as in Remark 3.4.103.4.10.

3.4.16 Overconvergent spaces

Our goal is now to associate to each weight (κ, r) or family of weights (κU, rU), a space

of overconvergent Hilbert modular forms. There are several constructions of these spaces

but we will be interested in the construction given by [AIP16bAIP16b]. In this case, one defines an

overconvergent sheaf which interpolates the sheaf Ωk from Definition 3.3.273.3.27. Using this,

one can then define the spaces of overconvergent Hilbert modular forms for G∗ and then,

using a projector, define the spaces for G. The construction of the overconvergent sheaf

can be found in [AIP16bAIP16b, AIP15AIP15, AIS14AIS14, Hat16Hat16], so we only give some of its properties.

Let f be the number of primes above p in F and let tm ∈ Qf be a multi-index

with 0 < ti ≤ 1
pm for m ≥ 1. Let M(c, µn) and M

∗
(c, µn) denote the formal completions

of M(c, µn),M
∗
(c, µn) along their special fibres. Now, letM(c, µn),M

∗
(c, µn) denote

the rigid fibres of M(c, µn),M
∗
(c, µn) respectively and letM(c, µn, tm),M∗(c, µn, tm)

denote the neighbourhoods of the respective ordinary locus defined by the condition that

valp(hpi) ∩ [0, 1] ≤ ti, where hpi are the partial Hasse invariants as defined in [AIP16bAIP16b,

3.2.1].

Now, the overconvergent sheaves are defined over formal models ofM(c, µn, tm)

andM∗(c, µn, tm), which are obtained as follows: let M(c, µn, tm)) (resp. M
∗
(c, µn, tm))

be the normalization of the formal model ofM(c, µn, tm) (resp. M∗(c, µn, tm) ) given

by taking iterated blow-ups along the ideals (hpi , p
ti) of M(c, µn) (resp. M

∗
(c, µn) ) and

removing all divisors at infinity. Then on M(c, µn, tm)) we can construct the following

sheaves:

Theorem 3.4.17 (Andreatta-Iovita-Pilloni). For every m-analytic weight (κ, r) ∈ WG∗(L)

there exists a coherent sheaf Ω†,(κ,r) of OM(c,µn,tm)-modules whose restriction to the rigid

analytic fibreM(c, µn, tm) is invertible.

More generally, to each affinoid U with a morphism U → WG∗ and m such that

(κU, rU) is locally m-analytic, one can attach a coherent sheaf Ω†,(κ
U,rU) of OM(c,µn,tm)×Û-

modules where Û = Spf(A) is the formal model of U, where A consists of power bounded

elements of U. Moreover, the restriction of Ω†,(κ
U,rU) to the rigid fibre is invertible. Lastly, if

(k, r) is a classical weight, then Ω†,(k,r) agrees onM(c, µn, tm) with the classical Ω(k,r) as

in Remark 3.3.323.3.32.

Proof. See [AIP16bAIP16b, Sections 3.4-3.5].
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Remark 3.4.18. In general, the Ω†,(κ
U,rU) and Ω†,(κ,r) depend on m, but when restricted

to the rigid fibres, they are independent of m, for this reason we have suppressed the

dependence on m. See [AIP16bAIP16b, Proposition 3.9 and Proposition 3.13].

Using these sheaves, one can then define the spaces of tm-overconvergent cuspidal

Hilbert modular forms for G∗ of weight (κU, rU) by setting

S†U(Γ1
1(c, n), tm) = H0(M(c, µn, tm)× U,Ω†,(κ

U,rU)(−B))

where B is again the boundary divisor. From this, one then uses a projector to define

families of tm-overconvergent cuspidal Hilbert modular forms for G of weight (κU, rU)

denoted SG,†U (Γ1(c, n), tm). Moreover, taking U = Spf(L) gives SG,†κ,r (Γ1(c, n), tm).

Theorem 3.4.19. Let U be an admissible open affinoid of WG and (κU, rU) as in 3.4.43.4.4. Let

A be the algebra of power bounded elements of U. Then for an appropriate66 choice of m and

tm the spaces SG,†U (Γ1(c, n), tm) are Banach (A⊗OL L)-modules satisfying (Pr). Moreover,

for any weight (κ, r) ∈ U(L) there is a natural specialization map

SG,†U (Γ1(c, n), tm) −→ SG,†κ,r (Γ1(c, n), tm)

which is surjective.

Proof. This is [AIP16bAIP16b, Theorem 4.4].

As before, these spaces have an action of F×,+, so they will not be fixed under

the action of Hecke operators. In particular, we have:

Lemma 3.4.20. Let ε ∈ F×,+ and assume that ε is also a p-adic unit. Then there is a

canonical isomorphism

Lε : SG,†U (Γ1(c, n), t) −→ SG,†U (Γ1(εc, n), t)

which only depends on ε modulo totally positive units.

Proof. This is [AIP16bAIP16b, Lemma 4.5].

Definition 3.4.21. Let

SG,†U (U1(n), t) :=

 ⊕
c∈Frac(F )(p)

SG,†U (Γ1(c, n), t)

 / (Lε(f)− f)ε∈Princ(F )+,(p)

6This means such that κU is m-analytic (see Definition 4.2.24.2.2)
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be the Banach module of tame level U , t-overconvergent cuspidal arithmetic Hilbert modular

forms for G with weights parametrized by U. Here Frac(F )(p) is the group of fractional

ideals prime to p and Princ(F )+,(p) is the group of positive elements which are p-adic

units.

Moreover, taking the limit over t we get Frechet spaces SG,†U (U1(n)) which give

a quasi-coherent sheaf of overconvergent cuspidal arithmetic Hilbert modular forms

SG,†(U1(n)) over WG, whose value at an open affinoid U ⊂ WG is SG,†U (U1(n)).

Remark 3.4.22. Note that taking U = Sp(L) with image (κ, r) in WG will give the

spaces of this fixed weight.

Following [AIP16bAIP16b, Section 4.3], for q prime to the tame level, one can define

commuting Hecke operators Tq, Sq action on SG,†(U1(n)). Moreover, for p|p one can

define operators Up such that Up =
∏

p|p U
e(p)
p for e(p) the ramification degree of p.

Proposition 3.4.23. The Up operator is a compact operator on S
G,†
κ,r (U1(n)) for any weight

(κ, r).

Proof. This follows from [AIP16bAIP16b, Lemma 3.27].

Definition 3.4.24. Let h ∈ Q≥0. We say an element f ∈ SG,†κ,r (U1(n)) has slope-≤ h for

Up (resp. Up for p|p) if it is annihilated by a unitary polynomial in Up (resp. Up) whose

roots have valuation less than h.

Remark 3.4.25. Note that if f is in fact an eigenform, then having slope-≤ h for Up
(resp. Up) is saying that the p-adic valuation of the Up (resp. Up) eigenvalue is less than h.

Notation 3.4.26. For each v ∈ Σ∞, we have a field embedding ιv of F into C given by v;

this map extends to a map Fp −→ Qp and then factors through the projection Fp −→ Fp

for some p above p. This then gives a natural surjection Σ∞ → Σp where v 7→ pv. For

each prime ideal p ∈ Σp let Σp be the set of v ∈ Σ∞ factoring through the projection

Fp → Fp.

Definition 3.4.27. Let (k, r, n, v, w) be a weight tuple with (k, r) be a classical algebraic

weight. For each prime ideal pj ∈ Σp we define vp(k, r) =
∑

i∈Σp
vi. If (k, r) is any

classical weight, we define vp by considering the algebraic part of the weight.

Theorem 3.4.28 (Control Theorem). Let (k, r) be a classical weight in WG. Let f ∈
SG,†k,r (U) be a finite slope (for Up) overconvergent Hilbert modular form whose Upi slope is less

than hi for pi ∈ Σp. If p is unramified and hi < vpi(k, r) + minj∈Σpi
{kj − 1} for all i,

then f is a classical form.
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Proof. See [TX16TX16, Theorem 1].

We now wish to use Buzzard’s Eigenmachine to construct the eigenvariety of

Hilbert modular forms. One of the key ingredients is the existence of links which is

checked explicitly in [Hat16Hat16, Section 3.3.3].

Theorem 3.4.29. Associated to the eigendata of (WG, SG,†(U1(n)),TTT , Up) we have an

eigenvariety XG(U1(n)) with the following properties:

(a) It is equidimensional of dimension g + 1.

(b) There is a universal character φ : TTT → OX .

(c) There is a map α : X →WG that is locally on X andWG, finite and surjective.

(d) For all (κ, r) ∈ WG, the points α−1(κ, r) are in bijection with the finite slope eigensystems

occurring in SG,†(U1(n)) |κ,r= SG,†κ,r (U1(n)).

Proof. This is [AIP16bAIP16b, Theorem 5.1].
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Chapter 4

Totally definite quaternionic

modular forms

Following [Buz07Buz07, Part III], we will define classical and overconvergent modular forms on a

totally definite quaternion algebra D over F and prove the control theorem in this setting.

In contrast to [Buz07Buz07], we will work with the weight space WG which has the advantage

of being equidimensional of dimension g + 1 (recall [F : Q] = g). Apart from this small

detail, the rest of our construction spaces of overconvergent quaternionic modular forms

over F follows [Buz07Buz07, Part III]. Throughout this chapter our chosen prime p may be

ramified unless otherwise stated.

4.1 Classical spaces

We will define the spaces of classical quaternionic modular forms using a definition that,

compared Section 1.21.2 , is more suited to p-adic interpolation; the crucial difference being

that the actions are ‘shifted’ from the infinite places to the places above p (cf. 1.2.41.2.4).

Notation 4.1.1. (1) Let D/F be a totally definite quaternion algebra split above p. Note

that this means we have an isomorphism OD ⊗OF Op ∼= M2(Op), where OD is

the maximal order of D and Op := OF ⊗ Zp. This then induces an isomorphism

Dp := GD(Fp) = D ⊗F Fp ∼= M2(Fp).

(2) Let πp denote the uniformisers of Fp and π ∈ Op be the element whose p component

of Op is πp. For s ∈ ZΣp we let πs = (π
sp
p ). By abuse of notation we also let π denote

the ideal of OF which is the product of all the prime ideals above p, i.e., the radical of

pOF .

(3) Let GD/Qp := ResF/Q(D×) × Qp, which is a connected reductive linear algebraic
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group over Qp (via our choice of splitting). Let T be the standard maximal torus, B

the standard Borel subgroup, and the unipotent radical N . We denote by B and N be

the opposite Borel and opposite unipotent radical. Let I ⊂ GD(Zp) be the standard
Iwahori subgroup in good position with respect to B (in good position means that

B,N, T,GD, N have fixed compatible integral models over Zp).

(4) For m ∈ ZΣp
≥1, set

Im =

{(
a b

c d

)
∈ G(Zp) | c ∈ πmOp

}
,

with I = I1 = I(1,...,1) and let Im = N(Zp) ∩ Im.

Furthermore, we set

T+ =
{
t ∈ T (Qp) | tN(Zp)t−1 ⊆ N(Zp)

}
=

{(
a 0

0 b

)
∈ T (Qp) | ab−1 ∈ Op

}

and

T++ =

{
t ∈ T (Qp) |

⋂
i>0

tiN(Zp)t−i = {1}

}
=

{(
a 0

0 b

)
∈ T (Qp) | ab−1 ∈ pOp

}
.

With this we define the semigroup ∆ = IT+I . Note that the Iwahori decomposition

tells us that

I = I1T (Zp)N(Zp),

and hence any δ ∈ ∆ can be written uniquely as δ = nδtδnδ with nδ ∈ I1, tδ ∈
T+, nδ ∈ N(Zp).

Definition 4.1.2. Let (k, r, n, v, w) be a weight tuple with (k, r) ∈ ZΣ∞
≥0 ×Z. Let Vk be the

L-vector space with basis of monomials
∏

v∈Σ∞
Zmv
v , with m ∈ ZΣ∞

≥0 , 0 ≤ mv ≤ kv − 2.

We define a right action of ∆ = IT+I on this space as follows: for γ = (γp)p∈Σp =(
ap bp
cp dp

)
p
∈ ∆, let

γ :
∏

v∈Σ∞

Zmss 7−→
∏

v∈Σ∞

(cvZv + dv)
nv det(γv)

vv

(
avZv + bv
cvZs + dv

)mv

Note that here (following [Buz07Buz07]) we have adopted the notation that for ap (resp. bp, cp, dp)

we let av (resp. bv, cv, dv) denote the image of ap under the corresponding map ι ◦ ιv for
v ∈ Σp as described in 3.4.263.4.26.
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Let Vn,v(L) denote the resulting ∆-module.11

Definition 4.1.3. Let U be an open compact subgroup of GD(Af ), such that its image

under the projection U → D×p lies in Im for some m ∈ ZΣp
≥0 with m ≥ 1 = (1, . . . , 1)

(with the natural ordering) and let (k, r, n, v, w) be a weight tuple with (k, r) ∈ WG a

classical weight. The space of quaternionic modular forms over D of weight k and level U ,

denoted SDk,r(U), is the space of functions

f : GD(Af ) −→ Vn,v(L)

such that:

(a) For γ ∈ GD(Q), we have f(γg) = f(g) for all g ∈ GD(A).

(b) For u ∈ U we have f(g) = f(gu−1) · up for all g ∈ GD(A), where up denotes the

p-part of u.

Remark 4.1.4. By choosing a field homomorphism L → C one can base change this

construction to C and again give them an action of U at infinity. The resulting spaces

will be isomorphic to those defined in 1.2.91.2.9, with ΣD = ∅.

4.2 Overconvergent spaces

We are now going to define the spaces of overconvergent modular forms for D, which

interpolate the classical spaces. For this we need to find a larger ∆-module containing

Vn,v(L), so we work with the spaces of locally analytic functions.

4.2.1 Locally analytic functions

Let X ⊂ Qs
p be open and compact.

Definition 4.2.2. For a finite extension L/Qp, we say a function f : X → L is L-analytic

if it can be expressed as a converging power series

f(x1, . . . , xs) =
∑
t1,...,ts

αt1,...,ts(x1 − a1)t1 · · · (xs − as)ts ,

for αt1,...ts ∈ L, and some (a1, . . . , as) ∈ X . We say it is algebraic if almost all α’s are

zero.
1Note that since we have chosen weights such that n + 2v is parallel, O×,+F will act trivially, when

embedded diagonally into I via OF → Op →M2(Op).
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Definition 4.2.3. For m ∈ Zr≥0, let A(X,L,m) be the L-vector space of m-locally

analytic functions, i.e., functions that are analytic on balls of radius p−m covering X .

Then Am(X,L) is a p-adic Banach space when X is compact. We let

A(X,L) =
⋃
m≥0

A(X,L,m).

This is the space of functions f : X → L that are m-locally L-analytic for some n.

We now define the ∆-modules that we will be interested in.

Definition 4.2.4. We begin by identifying Op with an open compact subset of Qg
p

compatible with the identification of I as an open compact of Q4g
p . We then consider

A(Op, L) =
⋃
m≥0

A(Op, L,m).

This is a ∆-module with the following action. For (κ, r, n, v, w) a weight tuple with

(κ, r) ∈ WG(L), f ∈ A(Op, L), γ =
(
a b
c d

)
∈ ∆ and z ∈ Op, let

(f · γ)(z) = n(cz + d)v(det(γ))f

(
az + b

cz + d

)
.

We denote this module by An,v(Op, L).

Lemma 4.2.5. For (κ, r) ∈ WG there exists a smallest m(κ, r), such that for all m ≥
m(κ, r), (κ, r) is m-locally analytic.

Proof. See [Urb11Urb11, Lemma 3.2.5].

From this it follows that

An,v(Op, L) =
⋃

m≥m(κ,r)

An,v(Op, L,m),

where An,v(Op, L,m) is the ∆-module A(Op, L,m) with the action defined as above.

More generally, since we wish to consider families of modular forms, one can extend this

definition as follows:

Definition 4.2.6. If U is an affinoid subdomain of WG defined over a finite extension

L/Qp and (κU, rU) is the restriction of the universal character to U, then we define

AU(Op, L) := AnU,vU(Op, L),

with the action of ∆ defined analogously where (κU, rU, nU, vU, wU) is a weight tuple.
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It follows from [Urb11Urb11, Lemma 3.4.6], that there exists a smallest integer m(U)

such that (κU, rU) is m(U)-analytic. Moreover,

AU(Op, L) =
⋃

m≥m(U)

AU(Op, L,m).

Lemma 4.2.7. Let U ⊂ WG be an affinoid subdomain defined over L, (κ, r, n, v, w) a

weight tuple with (κ, r) ∈ U(Qp), and m ≥ m(U). Then there is a canonical bicontinuous

isomorphism

AU(Op, L,m) ∼= O(U)⊗̂LAn,v(Op, L,m).

In particular, AU(Op, L,m) is a non-trivial O(U)-ONable Banach space and for m ≥ m(U),

the inclusion map AU(Op, L,m) ⊂ AU(Op, L,m+ 1) is completely continuous.

Proof. This follows from [Urb11Urb11, Section 3.4.4]. Specifically, it follows from Lemma 3.4.9,

Corollary 3.4.10 and Remark 3.4.12 of loc. cit.

4.2.8 Overconvergent quaternionic modular forms

Definition 4.2.9. Let (κ, r, n, v, w) be a weight tuple with (κ, r) ∈ WG(L) and U

be an open compact subgroup of GD(Af ), such that its image under the projection

U → D×p lies in Im for some m ≥ 1 and t ∈ ZΣp
≥0 is such that t + m ≥ m(κ) . The

space of overconvergent quaternionic modular forms of weight κ, level U and radius of

overconvergence p−t, denoted SD,†κ,r (U, t) is the space of functions

f : GD(Af ) −→ An,v(Op, L, t)

such that

(a) For d ∈ GD(Q), we have f(dg) = f(g) for all g ∈ GD(A).

(b) For γ ∈ U we have f(g) = f(gγ−1) · γp for all g ∈ GD(A), where γp is the p-part of

γ.

If U ⊂ WG is an affinoid subdomain defined over L and t ≥ m(U), then define SD,†U (U, t)

to be the space of functions

f : GD(Af ) −→ AU(Op, L, t)

satisfying (a), (b) above. Lastly, taking the limit over t we obtain Fréchet spaces SD,†κ,r (U).

We now have the following useful result which describes how the radius of

overconvergence and the level are linked.
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Proposition 4.2.10. Let U = U∗(n) for ∗ ∈ {∅, 0, 1} with p - n and let (κ, r) ∈ WG. If

we take s1, s2 such that s1 + s2 + t ≥ m(κ), then we have a canonical Hecke equivariant

isomorphism

SD,†κ,r (U ∩ U0(πs2), t+ s1) ∼= SD,†κ,r (U ∩ U0(πs1+s2), t).

Proof. See [Buz07Buz07, Proposition 11.1].

Remark 4.2.11. Note that in this way we can view classical forms of level U0(πs) and

non-trivial character at p as ‘part of’ our eigenvariety of level U0(π).

4.3 Hecke operators and the Control Theorem

Following Section 12 of [Buz07Buz07], we define the Hecke operators on these spaces.

Definition 4.3.1. For U ′ = U ∩ Ui(πs) with U = U∗(n) with n coprime to π, we call n

the tame level and πs the wild level.

Notation 4.3.2. If v is a finite place of F , such that Dv is split, then let ηv ∈ D×f be the

element which is the identity at all places different from v and at v it is the matrix
(
πv 0
0 1

)
,

for πv a uniformizer of Fv. In order to ease notation later on, when v|p we choose the

same uniformizers as we had before.

Definition 4.3.3. Let U have tame level n and wild level πs. For each v as above, we

define the Hecke operators Tv as the double coset operators given by [UηvU ]. Moreover,

if v is coprime to level, then we can regard πv as an element of the centre of D×f and we

denote by Sv the operator [UπvU ]. Lastly, for each p ∈ Σp let Up denote the operator Tp
and let Up =

∏
p∈Σp

Up. We denote by TTT = TTTD(U), the Hecke algebra generated by the

operators22 Tq, Up, where q - nd with d = Disc(D) and p ∈ Σp.

We now want to show that the overconvergent quaternionic modular forms of

small slope are classical. To do this we will follow the proof of the case F = Q in [Buz04Buz04,

Section 7]. We begin with some preliminaries.

Lemma 4.3.4. The Up operator acting on S
D,†
U (U ∩U0(πs), t) for s+ t ≥ m(U) is compact.

In particular, this holds for the spaces SD,†κ,r (U ∩ U0(πs), t) for s+ t ≥ m(κ, r).

Proof. See [Buz07Buz07, Lemma 12.2] or [Urb11Urb11, Lemma 3.2.8].

Proposition 4.3.5. Let f ∈ SD,†κ,r (U ∩ U0(πs), t) with s+ t ≥ m(κ, r). If Upf = λf for

some non-zero λ, then f ∈ SD,†κ,r (U ∩ U0(πs), t′), for any t′ ≤ t such that t′ + s ≥ m(κ).
2Note that these operators are independent of choice of uniformizer for v not dividing p.
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Proof. This follows easily by noting that Upf ∈ SD,†κ,r (U ∩ U0(πs), t− 1) and then using

Proposition 4.2.104.2.10.

Definition 4.3.6. Let (κ, r) be an algebraic weight and let

κi = (k1, . . . , ki−1, 2− ki, ki+1, . . . kg).

Note that if κ = 2w − r then κi = 2w′ − r where w′j = wj for j 6= i and w′i = vi. For

each i ∈ {1, . . . , g} corresponding to a place in Σ∞, we define a map

Θi : SD,†κ,r (U, 0) −→ SD,†κi,r(U, 0)

by setting

Θi(f)(h) =
∂ki−1f(h)

∂zki−1
i

for h ∈ GD(Af ).

Note that f(h) ∈ An,v(Op, L, 0) so it can be written as a converging power series

in variables (z1, . . . , zg), so
∂ki−1f(h)

∂z
ki−1
i

makes sense. Moreover, one needs to check that Θi

is actually well-defined, but this follows at once from the simple check that for any γ ∈ I
we have Θi(f)|γ = Θi(f |γ).

Theorem 4.3.7 (Control Theorem). Let U ′ = U∗(n) with (n, π) = 1 and U = U ′ ∩
U1(πs) for s ≥ 1 and let (k, r) be a classical weight. Let f ∈ SD,†k,r (U, t) be an eigenform for

each Upi with eigenvalue αpi . If for each pi|p we have

valp(αpi) <
vpi(k, r) + minj∈Σpi

{kj − 1}
epi

,

where epi is the ramification degree, then f ∈ SDk,r(U) (in other words, f is classical).

Proof. We will only sketch the proof, but the full details33 can be found in [Yam07Yam07, Theorem

2.3]. First note that if Θi(f) = 0 for all i then f must in fact be classical. The task is

now to give a criterion for f to be in this kernel based only on the slope of f . Now,

let U0
pi = π

−vpi (k,r)
pi Upi which has operator norm ≤ 1. Then any eigenform of U0

pi

with negative slope must in fact be zero. Now Θi sends U0
pi-eigenforms of slope h to

U0
pi-eigenforms of slope h−

minj∈Σpi
{kj−1}

epi
, from which one can deduce the result.

3Up to normalization
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Using the above and the Eigenmachine we can construct the eigenvariety associated

to overconvergent quaternionic modular forms for D/F .

Theorem 4.3.8. Let U = U ′ ∩ U0(π) with U ′ having level n coprime to π. Let Z be the

spectral variety defined as usual and TTT = TTTD(U) as defined in 4.3.34.3.3. Lastly, let SD,†(U)

be the coherent sheaf given the nuclear Frechet spaces SD,†U (U) where U is an affinoid with

a morphism U → WG. Associated to the eigendata of (WG, SD,†(U),TTT , Up) we have an

eigenvariety XD(U) which is equidimensional of dimension g + 1 and satisfies the conditions

of Theorem 2.4.52.4.5.

Proof. The existence of such an eigenvariety and the fact that it is equidimensional follows

from [Buz07Buz07, Section 13]. The fact that is it is equidimensional of dimension g + 1 is due

to the weight space that we have used.
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Chapter 5

Overconvergent cohomology

groups

In this section we will very briefly recall the construction of the eigenvarieties associated

to overconvergent cohomology groups. The full details of this construction can be found

in [Han17Han17].

5.1 Classical cohomology groups

Let YD(U) be a Shimura variety as in Section 1.31.3 associated to a quaternion algebra D

(not necessarily totally definite) and a sufficiently small level U . We define local systems on

YD(U).

Definition 5.1.1. (a) If N is a right U -module, denote by L(N) the sheaf of locally

constant sections of the cover

Ñ := GD(Q)\(GD(A)×N)/UC+
∞ −→ YD(U),

with left action of GD(Q) and right action of UC+
∞ on GD(A)×N given by

γ · (g, n) · uc = (γguc, nu)

for γ ∈ GD(Q), g ∈ GD(A), n ∈ N , u ∈ U and c ∈ C+
∞ (see 1.2.21.2.2 for the definition

of C+
∞).

(b) If M is a Q vector space with a right action by GD(Q), we again denote by L(M)

the sheaf of locally constant sections of the cover

M̃ := GD(Q)\(GD(A)×M)/UC+
∞ −→ YD(U),
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with left action by GD(Q) and right action by UC+
∞ on GD(A) × M given by

γ · (g, n) · uc = (γguc, nγ) for γ ∈ GD(Q), g ∈ GD(A), n ∈ N , u ∈ U and c ∈ C+
∞.

In both cases the local systems will be trivial if ZU = ZGD(Q) ∩ U does not act

trivially on N or M , where ZGD is the center of GD .

Remark 5.1.2. Note that it is possible to have a moduleM , which is simultaneously a right

U and GD(Q) module. In particular, if we are in the case where M is a GD(Qp)-module,

and both U and GD(Q) act through this action, then in this case it is easy to see that

both the local systems defined above will be isomorphic.

Now choose a finite resolution F•(ti) → Z → 0 of Z by Z[Γi(U)] modules of

finite rank (here ti and Γi(U) are as in 1.3.21.3.2 and 1.3.41.3.4). This is called a Borel-Serre

resolution, since its existence relies on taking the Borel-Serre compactification of a certain

manifold (see [Urb11Urb11, Lemma 4.2.2]).

Definition 5.1.3. Let N be a left U -module and set

C•(YD(U), N) =
⊕
i

HomZ[Γi](F•(ti), N).

If we take this complex and compute its cohomology groups, we get H•(YD(U),L(N)).

Remark 5.1.4. One can define an action of the Hecke algebra on these cohomology

groups or directly on the complex. For the relevant definitions see [BS13BS13, Section 1.5.2] or

[Urb11Urb11, Section 4.2.6].

We now need to define some local systems to work with.

Definition 5.1.5. Let Vn,v(L) be as in Definition 4.1.24.1.2. This then gives us a local system

whose cohomology groups H•(YD(U),L(Vn,v(L)∨)) are classical cohomology groups. Here

Vn,v(L)∨ denotes the L dual of Vn,v(L).

Remark 5.1.6. In the above definition one usually takes L = C, but since we are

interested in constructing eigenvarieties, we will work with L being a ‘sufficiently large’

finite complete extension of Qp. But note that if we tensor the resulting spaces by C, then
we will end up with the same (classical) cohomology groups.

We now have the following important result relating the spaces of modular forms

to the classical cohomology groups.

Theorem 5.1.7. (Eichler-Shimura) Let F be a totally real number field, with [F : Q] = g,

D/F a quaternion algebra and q = |ΣD|. Then,
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• Let D = M2(F ). If |F : Q| is odd or |F : Q| is even and (k, r) an algebraic weight

not of the form (2, r) we have⊕
J⊂ΣF

Sk,r,J(U)
∼−→ Hg

cusp(Y (U),L(Vn,v(L)∨)).

• Let D a division quaternion algebra. If |ΣD| is odd or |ΣD| is even and (k, r) an

algebraic weight not of the form (2, r) we have

⊕
J⊂ΣD

SDk,r,J(U)
∼−→ Hq(YD(U),L(Vn,v(L)∨)).

Proof. This theorem is usually stated for C coefficients, but there is no problem replacing

this with L as above. For D 6= M2(F ), see [Hid88Hid88, Theorem 6.2] and [Hid94Hid94, Proposition

3.1]. For M2(F ) see [BS13BS13, Proposition 6.4].

Here Hg
cusp(Y (U),L(Vn,v(L)∨)) is the cuspidal cohomology which can be shown

to be a direct summand of Hg(Y (U),L(Vn,v(L)∨)) (cf. [Han17Han17, Section 3.2]).

Remark 5.1.8. For weights of the form (2, r) and |ΣD| even one needs to add a summand

to the right hand side of the above equations. For D a totally definite quaternion algebra,

this summand is exactly the space Inv(U) from Definition 1.2.91.2.9 (e).

5.2 Overconvergent cohomology groups

Definition 5.2.1. Let λ ∈ Homcts(T (Zp), L×) be a weight coming from WG (cf. 3.4.153.4.15).

Let Dλ(L) be the L-linear L-dual of Aλ(Op, L), i.e.

Dλ(L) = Homcts
L (Aλ(Op, L), L).

Similarly, define Dλ,m(L) = Homcts
L (Aλ(Op, L,m), L) as the continuous L-dual of

Aλ(Op, L,m), and we give Dλ,m a dual continuous left action of ∆ denoted by ?. We

note that the action is such that for d ∈ T++, d? factors through Dλ,n+1 ↪→ Dλ,m. Lastly,
for U ⊂ WG an affinoid subdomain, we let DU,m = Homcts

O(U)(AU(Op, L),O(U)) and

DU = Homcts
O(U)(AU(L),O(U)).

Proposition 5.2.2. The assignment U 7→ DU defines a Fréchet sheaf onWG.

Proof. See [Han17Han17, Section 2].
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Now, in order to define our eigenvarieties, we will be interested in the following

cohomology groups.

Definition 5.2.3. Let U be as above, λκ,r ∈ WG and U an open affinoid of WG.

Then H•(YD(U),L(Dλκ,r)) are the overconvergent cohomology groups attached to D and

H•(YD(U),L(DU)) is a family of overconvergent cohomology groups. We will sometimes

drop the L to ease notation.

Remark 5.2.4. One can define an action of Up on these cohomology groups and show

that it is a compact operator, from which we can then define the slope decompositions of

these cohomology groups. See [Urb11Urb11, Section 1.2.5] or [Han17Han17, Section 2.1].

In this setting we again have a control theorem.

Theorem 5.2.5. (Ash-Stevens, Urban) Fix an arithmetic weight λk,r and let U be a compact

subgroup of GD(Af ) of wild level πm and sufficiently small. If h < mini ki − 1 and

m ≥ m(λκ), then we have a natural isomorphism of Hecke modules

H•(YD(U),Dλk,r)
≤h ∼= H•(YD(U), Vλk,r(L)∨)≤h.

Proof. See [Urb11Urb11, Proposition 4.3.10] or [Han17Han17, Theorem 3.2.5].

Now in order to define the eigenvariety associated to these overconvergent coho-

mology groups, we first need to define the generalized eigendata. Most of this will be

the same as in the previous sections, but we need to define the spectral variety and the

coherent sheaf. This can be found in [Han17Han17, Section 4.3], but we briefly recall the main

ideas here. For m ≥ m(U) we have a well-defined action of Up on C•(YD(U),DU,m), so

we can attach a Fredholm series

fU = det(1− UpX | C•(YD(U),DU))

to this action. By Tate’s acyclicity theorem, we can then find f ∈ O(WG){{X} with
f |U (X) = fU(X). With this we define the spectral variety in this setting to be given by

the Fredholm hypersurface Zf = Z (f).

We now have the following result of Hansen, which allows us to define a complex

of coherent analytic sheaves on Zf .

Proposition 5.2.6 (Hansen). We have a unique complex C• of coherent analytic sheaves on
Zf , such that for any slope-adapted affinoid ZU,h, we have

C•(ZU,h) ∼= C•(YD(U),DU)≤h.
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Proof. See [Han17Han17, Proposition 4.3.1].

If we then take the cohomology of this sheaf we get a graded sheaf N ∗
D,U on Zf

with a canonical isomorphism

N ∗
D (ZU,h) ∼= H∗(YD(U),DU)≤h := ⊕i Hi(YD(U),DU)≤h,

and by [Han17Han17, Proposition 3.15] the natural maps

TTT −→ EndO(ZU,h)(H
∗(YD(U),DU)≤h)

glue to give a algebra homomorphism ψ : TTT → EndOZ
(N •

D,U ) which preserves the

grading. Here TTT = TTTD(U) is the Hecke algebra as in Definition 4.3.34.3.3.

Proposition 5.2.7. Let U′ be an affinoid subdomain of U, then there are canonical isomor-

phisms

C•(YD(U),DU)≤h ⊗O(U) O(U′) ∼= C•(YD(U),DU′)
≤h

and

H∗(YD(U),DU)≤h ⊗O(U) O(U′) ∼= H∗(YD(U),DU′)
≤h.

Proof. This is [Han17Han17, 3.1.5].

Now we note that a point λ ∈ U is not an affinoid subdomain, so we cannot apply

the above result to recover H∗(YD(U),Dλ)≤h. In order to recover this space we need the

following stronger result.

Theorem 5.2.8 (Hansen). Let V be a rigid Zariski closed subspace of U and define DV =

DU ⊗O(U) O(V). Then there is a convergent second quadrant spectral sequence

Ei,j2 = Tor
O(U)
−i (Hj(YD(U),DU)≤h,O(V)) =⇒ Hi+j(YD(U),DV)≤h.

Proof. This is part of [Han17Han17, Theorem 3.3].

Now we will be interested in the eigenvarieties associated to the following general-

ized eigendata

HD = (WG,Zf ,N
∗
D,U ,TTT , ψ),

where everything is defined as in the previous sections apart from N ∗ (here D can be

M2(F ), in which case we denote this with subscript G).

Notation 5.2.9. We denote by HD(U) and HG(U) the eigenvarieties associated to HD

and HG respectively.
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Remark 5.2.10. The complex C• above is not canonical, since it depends on choice

of Borel-Serre complex, which means that Zf and the coherent sheaf C• above are not
canonical either, but it turns out that the cohomology sheaves N ∗

D,U are canonical and

therefore so are the resulting eigenvarieties.

72



Chapter 6

p-adic Langlands functoriality over

totally real fields

In this chapter we will relate the different eigenvarieties we have defined in the previous

chapters. This will give us an overconvergent Jacquet-Langlands correspondence for

Hilbert modular forms which interpolates the classical correspondence. Our results are a

natural generalization of Chenevier’s results ([Che05Che05]) to Hilbert modular form setting,

but we note that in the case of number fields of even degree our corresponding results are

stronger than those in loc.cit., since in these cases we obtain isomorphisms between the

relevant eigenvarieties and rather than closed immersions.

6.1 The totally definite case

In this section we will prove the following:

Theorem 6.1.1. Let D be a totally definite quaternion algebra with DiscD = d and n

an ideal with (n, d) = 1. Let XG := XG(U1(nd)) and XD := XD(U1(n)) be as in

Theorems 3.4.293.4.29 and 4.3.84.3.8 respectively, with U1(nd) a level whose associated moduli problem is

representable11 and let p be unramified. Then these eigenvarieties are reduced and the classical

Jacquet-Langlands correspondence can be interpolated to obtain a closed immersionXD ↪→XG

satisfying the properties of Theorem 2.5.52.5.5.

Corollary 6.1.2. If g = [F : Q] is even, then taking D (totally definite) with d = 1, the

closed immersion given by Theorem 6.1.16.1.1 becomes an isomorphism.

We will derive Theorem 6.1.16.1.1 from Theorem 2.5.52.5.5 (the Interpolation theorem). To

this end, we need to exhibit a very Zariski dense set X ⊂ WG on which we can put

1Meaning that the moduli problem of HBAV with a µnd-level structure is representable.
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classical structures for both sets of eigenvariety data. The set of all classical weights (see

Definition 3.4.93.4.9) is such a candidate. The fact that it is a very Zariski dense subset ofWG

is a well-known fact but we include its proof for the sake of completeness. This requires

the following lemma.

Lemma 6.1.3. If W is a non-empty rigid space. ThenW is irreducible if and only if the only

analytic subset Z ⊂W which set-theoretically contains a non-empty admissible open of W is

Z = W .

Proof. See [Con99Con99, Lemma 2.2.3].

Proposition 6.1.4. Let X be the set of classical weights, then X is very Zariski dense inWG.

Proof. This is a simple generalization of [Che04Che04, Proposition 6.2.7] or [Ram09Ram09, Lemma

4.1]. By 3.4.33.4.3 we have

WG ∼= H∨ ×B(1, 1)g+1 ∼=
⊔
χ

Wχ,

where we index over the elements of H∨. Let κψτa be a classical weight with κ = 2w− r,
ψ and τa as in Definition 3.4.93.4.9. Then under the above isomorphism

κψτa 7→

κ̂ψτa ,
 g∏

j

(1 + p)wj

 , (1 + p)r

 ,

where κ̂ψτa denotes the restriction to H∨ (note that κψτa ∈ WG(E), with E = Qp[ψ]).

Assume that κψτa ∈ Wχ for some χ and take any irreducible admissible affinoid open

V ⊂ WG that contains κψτa . Then V ⊂ Wχ and moreover, since V (E) is open, there

exists sss = (s, s′) ∈ QΣ∞
>0 × Q>0 such that the closed ball of radius sss around κψτa is

contained in V , i.e.,

B[κψτa , sss] :=

g∏
j

B[wj , sj ]×B[r, s′] ⊂ V.

By Lemma 6.1.36.1.3, we see that if B[κψτa , sss] ∩ X is Zariski dense in B[κψτa , sss], then

V (E) ∩X is Zariski dense in V , which is what we want to prove. So we are reduced to

showing that B[κψτa , sss](E) ∩X is Zariski dense in B[κψτa , sss]. To see this, let κ, κ′ ∈ X ,

then
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|κ− κ′| = max
i
{|(1 + p)wi − (1 + p)w

′
i |p, |(1 + p)r − (1 + p)r

′ |p}

= max
i
{|(1 + p)wi−w

′
i − 1|p, |(1 + p)r−r

′ − 1|p}.

So taking κ′
ψτb
∈ X , with κ′ = 2w′ − r′ is such that:

• for N large enough, wi ≡ w′i mod (p− 1)pN , r ≡ r′ mod (p− 1)pN ;

• κψτa and κ′
ψτb

lie in the same component of the weight space.

Then we can easily see that B[κψτa , sss] contains infinitely many elements of X , hence we

get the result.

Definition 6.1.5. Let Z ⊂ WG × A1 be the spectral variety defined by FredM (Up) for

M (as usual) the coherent sheaf on WG of overconvergent Hilbert modular forms on D

or M2(F ) with a classical structure M cl. We call a point z ∈ Z classical if its projection

to WG is a classical weight and if det(1 − TUp|M cl) vanishes at z. We denote these

points by Z cl.

Remark 6.1.6. Note that if M is given by the ‘spreading out’ of the spaces of overcon-

vergent Hilbert modular forms and if we write z = ((κz, rz), α) ∈ WG × A1 then z is

classical if (κz, rz) is a classical weight and there exists a classical Hilbert modular form

with Up eigenvalue α−1.

Proposition 6.1.7. The subset Z cl of Z is a very Zariski dense subset.

Proof. This follows from the proof of [Che05Che05, Proposition 3.5]. The basic idea is to use the

fact that X and Xh are very Zariski dense, together with the fact that the admissible cover

of Z as given by [Buz07Buz07, Section 4] is finite flat over its projection to weight space.

Let n be an ideal of OF with (n, d) = 1 and π - nd, where d = Disc(D). Let

UD = U1(nπ) and set TTTD(UD) to be the Hecke algebra.22 Let UG be the corresponding

level structure when one takes D = M2(F ), which gives the level structure in the Hilbert

modular form case. By fixing a splitting at places away from d, we let TTTD act on the

spaces of Hilbert modular forms. Therefore, throughout this section we denote TTTD simply

by TTT .

Remark 6.1.8. We note that, for g even, we can pick the quaternion algebra D to be

totally definite with d = 1. Now, by fixing a splitting we can identify UD and UG, which

2Note that the Hecke algebra consists of all Hecke operators away from d.
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we will simply denote by U . In this case the classical Jacquet-Langlands correspondence

(Theorem 1.4.51.4.5) gives an isomorphism of Hecke modules

SDk,r(U)
∼−→ Sk,r(U).

However, for g odd, since D is totally definite, we must have d 6= 1. In this case,

Theorem 1.4.51.4.5 gives an isomorphism of Hecke modules

SDk,r(U
D)

∼−→ Sd-new
k,r (UG(d)) ↪→ Sk,r(U

G(d)),

where UG(d) = UG ∩ U1(d).

Theorem 6.1.16.1.1 then follows from Theorem 6.1.96.1.9 (below) together with Lemma

6.1.126.1.12:

Theorem 6.1.9. Let XG and XD be the eigenvarieties associated to the eigendata

D1 = (WG, SG,†(UG(d)),TTT , Up)

and

D2 = (WG, SD,†(UD),TTT , Up)

respectively and let p be unramified. Then we can interpolate the classical Jacquet-Langlands

correspondence and obtain a closed immersion ιD : X red
D ↪→X red

G .

Proof. We will prove this using Theorem 2.5.52.5.5. Let X be the set of classical weights,

whose elements we will denote by k. We now define classical structure on X . For

each (k, r) ∈ X , let M cl
G,k,r and M cl

D,k,r be the TTT -modules Sk,r(UG(d)) and SDk,r(U
D)

respectively of classical cusp forms of weight k and level UG(d), UD respectively. We

need to check that this is indeed a classical structure. Pick h ∈ R≥0. Then the set of

(k, r) ∈ X such that SG,†k,r (UG(d))≤h ⊂M cl
G,k,r contains all (k, r) ∈ WG, such that

h < vp(k, r) + min
i∈Σ∞

{ki − 1}

by Theorem 3.4.283.4.28, and hence satisfies the properties of Definition 2.5.32.5.3. Recall that the

superscript ≤ h denotes slope decomposition with respect to Up.

Similarly, if (k, r) ∈ X is such that33

h < vp(k, r) + min
i∈Σ∞

{ki − 1},

3Note that we are in the case where p is unramified.
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then SD,†k,r (UD)≤h ⊂M cl
D,k,r. It follows that we again have a classical structure. Now, as

a consequence of the classical Jacquet-Langlands correspondence we have that

det
(

1− UpX|M cl
D,k,r

)
divides det

(
1− UpX|M cl

G,k,r

)
.

Hence we can apply Theorem 2.5.52.5.5 to obtain the closed immersion ιD : X red
D ↪→X red

G .

Now observe that if g is even, then we can pick D to be totally definite and have

d = 1 (i.e. trivial discriminant). Then the classical Jacquet-Langlands correspondence

gives that M cl
G,k,r

∼= M cl
D (k) at classical weights, and thus

det(1− UpX |M cl
D (k)) = det(1− UpX |M cl

G,k,r)

therefore Corollary 2.5.62.5.6 gives us an isomorphism X red
D
∼= X red

G . This proves most of

Corollary 6.1.26.1.2, it only remains to show that the eigenvarieties are reduced which we will

follow from Lemma 2.5.72.5.7.

Proposition 6.1.10. Fix h ∈ R≥0. There is a Zariski dense subset X ′ ⊂ X (of WG) such

that for all k ∈ X ′, the TTT -module M cl,≤h
G,k,r is semisimple.

This result will be consequence of the two lemmas below. We begin by noting that

the classical Jacquet-Langlands correspondence gives us that if M cl,≤h
G,k,r is a semisimple

TTT -module, then so is M cl,≤h
D,k,r . To ease notation, we let

V h
k,r := M cl,≤h

G,k,r = Sk,r(U
G(d))≤h.

Now, since we are working with classical Hilbert modular forms, the action of the Hecke

operators can be described by their action on q-expansions. Next we note that the

only Hecke operators that might not be semisimple are the Upi , for pOF =
∏
i pi. This

is because all the other operators are normal (commute with their adjoints), so they

are semisimple (cf. 3.2.73.2.7). Hence we must show that for each i, the operators Upi act

semisimply on the space of cusp forms of slope-≤ h. In fact we shall show that Upi acts

semisimply on V h
k′,r′ for a Zariski dense subset of X ′ ⊂ X . Lastly, we need to relate slope

decomposition of V h
k,r with respect to Up, to the slope decompositions with respect to the

Upi . To do this we have the following:

Lemma 6.1.11. Let S be a Banach space on which we have pairwise commuting operators Ui
for i = 1, . . . , n, all of which have operator norm ≤ 1 (which means they have positive slopes)

and such that U =
∏
i Ui is a compact operator. Then the slopes of the Ui operators acting on

the space S≤h (this is the slope decomposition with respect to U ) are all ≤ h.
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Proof. By definition we have that S≤h is a finite dimensional subspace of S. Therefore by

choosing a basis we can view the Ui operators as matrices. Now since the Ui are pairwise

commuting operators, we can simultaneously upper triangularize them (after possibly

extending the base field). From this it follows that the eigenvalues of U acting on S≤h are

the product of the eigenvalues of the Ui.

Now since the slopes of an operator are simply the p-adic valuation of its eigen-

values, we have that on S≤h the slopes of U are the sum of the slopes of the Ui operators

and therefore, since they all have positive slopes, it follows that the slopes of the Ui acting

on S≤h are all ≤ h as required.

After renormalizing our operators, we can apply this to our situation to see that

since Up =
∏
i Upi is compact, then we have a slope decomposition for any h. Moreover,

for each h we have that the slope of each Upi acting on V h
k,r is less than or equal to h.

With this we can prove the following Lemma:

Lemma 6.1.12. There is a Zariski dense subset X ′ ⊂ WG, such that for each i, Upi acts

semisimply on V h
k,r for (k, r) ∈ X ′.

Proof. Using Lemma 6.1.116.1.11 the result is a simple generalization of the classical situation,

as is done in [Bel12Bel12, Theorem 3.30], or from the proof of [CE98CE98, Theorem 4.2]. But for

completeness we prove it here.

First note that we can decompose V h
k,r into its pi-new and pi-old parts. The action

of Upi on V
h,pi-new
k,r is normal and hence diagonalizable. With this we are reduced to

showing that this operator acts semisimply on V h,pi-old
k,r . In order to prove this, it is enough

to show that on each generalized TTT -eigenspace of V h,pi-old
k,r it acts semisimply. Each of

these spaces will correspond to a newform f of (lower) level not divisible by pi. Now, let

api = a(pi, f|Tpi) be the Tpi eigenvalue of f and Ψ its nebentypus. Since we are assuming

that for each i, we have (nd, pi) = 1, then it follows from Atkin-Lehner Theory that each

of these pi-old subspaces is 2-dimensional, and generated by f and ιpi(f) (see Section

3.2.83.2.8). Proposition 3.2.113.2.11 then shows that on this subspace the Upi operator has minimal

polynomial given by

X2 − apiX +NF/Q(pi)
r+1Ψ∗(pi).

Therefore, since NF/Q(pi) = plpi (here lpi is the residue degree), we see that

if we pick (k, r), such that r > (2h − lpi)/lpi , then h < lpi(r + 1)/2. Therefore, the

polynomial must have a unique root α with valuation ≤ h, from which it follows that on

the generalized TTT -eigenspace of V h,pi-old
k,r corresponding to f, we have that Upi acts as the

scalar α. Hence it is diagonalizable. This then shows that on V h
k,r the Upi operators act

semisimply for (k, r) large enough as required.
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From this it follows that for any h ≥ 0, the operators Upi act semisimply on

Sk,r(U
′)≤h for (k, r) in a Zariski dense subset of WG, proving Proposition 6.1.106.1.10. Then

by Lemma 2.5.72.5.7, we have at once that X red
D
∼= XD and X red

G
∼= XG, which proves

Corollary 6.1.26.1.2.

Remark 6.1.13. In light of Theorem 6.1.96.1.9 and Remark 6.1.86.1.8, we see that for g even and D

totally definite with d = 1, we have an isomorphism of eigenvarieties ιD : X red
D

∼→X red
G .

However, for g odd and D totally definite, the closed immersion ιD : X red
D ↪→X red

G is

never an isomorphism since d 6= 1. At best, we can say that its image is the d-new part of

of X red
G as in the case of modular forms over Q (cf. [Che05Che05]).

Remark 6.1.14. We note that, for g odd, there are alternative constructions for the

eigenvariety X red
D . Let D be the quaternion algebra ramified at all infinite places but

one, with d = 1. Then Brasca [Bra13Bra13] constructs an eigenvariety associated to X red
D

from which one can use the above to obtain an isomorphism ιD : X red
D

∼→ X red
G . His

construction combines the theory of Shimura curves with work of Andreatta-Iovita-Pilloni

to construct the relevant eigenvarieties.

6.2 General quaternion algebras

Combining the (classical) Eichler-Shimura isomorphism with the results from the previous

section, we can now prove the following theorem:

Theorem 6.2.1. Let D be any quaternion algebra, U a sufficiently small level and let

HD(U),HG(U ∩ U0(d)) be the eigenvarieties associated to overconvergent cohomology groups

as in 5.2.95.2.9. Then these eigenvarieties are reduced and there is a closed immersion

HD(U)o ↪→HG(U ∩ U0(d))

interpolating the classical Jacquet-Langlands correspondence, where HD(U)o is the core as

defined in 2.5.82.5.8.

Proof. First recall that the above eigenvarieties have been constructed from the generalized

eigendata of HD = (WG,ZD,N
∗
D ,TTT , ψD) and HG = (WG,ZG,N

∗
G ,TTT , ψG) . Now, in

order to apply Theorem 2.5.102.5.10 we need (with the notation as in theorem):

(a) A closed immersion j :W1 ↪→W2.
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(b) A very Zariski dense subset Z cl ⊂ Z o
D with image in ZG under the map induced by

j and such that for all t ∈ TTT and all z ∈ Z cl

det
(

1− ψD((tU))Y |N cl
D,z

)
divides det

(
1− ψG(tU)Y |N cl

G,z

)
in k(z)[Y ].

In our setting we have W1 =W2 =WG so (a) is satisfied. For part (b), we let Z cl be we

use subset of ZD of points z ∈ Z whose projection ω(z) to WG is a classical weight not

of the form (2, r) (here we are using 3.4.133.4.13 ) and det(1− TUp|N cl
D,z

) vanishes at z, where

N cl
D,z = H∗(YD(U),L(Vω(z))

∨). Now, just as in Proposition 6.1.76.1.7, it follows that Z cl is a

very Zariski dense subset of Z o
D. We only need to check the divisibility of the Fredholm

determinants, but this follows at once from combining the Theorem 5.1.75.1.7, Theorem 1.4.51.4.5

and Proposition 1.4.41.4.4.

Remark 6.2.2. The advantage of working the overconvergent cohomology is that we do

not need to worry about the representabiliy of the moduli problems. On the other hand,

since we are using Hansen’s more general interpolation theorem, we only have a closed

immersion from the core of the quaternionic eigenvariety, but we expect that for D a

division quaternion algebra, the resulting eigenvarieties are unmixed.
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Part III

Slopes of overconvergent Hilbert

modular forms
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In this final section we will use the overconvergent Jacquet-Langlands to study

slopes of Hilbert modular forms. This reduces us to computing the slopes of overconver-

gent quaternionic modular forms which are more suited to explicit computations. The

algorithms used to compute Up are very much inspired by [Dem05Dem05, Jac03Jac03, WXZ14WXZ14].

We will compute slopes in many cases and make conjectures about their structure.

Alongside this, we give some theoretical evidence towards our stated conjectures and

prove a lower bound for the Newton polygon of Up action for any arithmetic weight.
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Chapter 7

Quaternionic modular forms over

real quadratic fields

Throughout this section F will be a real quadratic field (although most of the theoretical

results in this section can easily be extended to any totally real field of even degree). In

particular, for computational purposes we will work with Q(
√
d) where d = 5, 13, 17 since

these are real quadratic fields for which there exists a totally definite quaternion algebra

D/F with trivial discriminant and class number one11. The fact that we work with a

quaternion algebra that has class number one is simplify computations, and one can most

certainly work over any number field of even degree (or possibly any degree) by adapting

the work of Dembélé-Voight [DV13DV13], but at the cost of increasing the computational

complexity.

In order to make this chapter more self-contained, we recall/simply some of the

notation introduced before:

Notation 7.0.1. (1) As before, we let Op := OF ⊗ Zp for a rational prime p, which we

assume is split or inert in OF . In the split case we write p = p1p2, from which it

follows that Op ∼= OFp1
⊕OFp2

. In this case we take p to be a uniformizing element in

each factor, (which we can do since p is split). If we need to distinguish the components

we will denote the uniformizers by πp as usual. Note that in this case Fpi
∼= Qp and

OFpi

∼= Zp.

When p is inert, Op is simply the ring of integers of the degree 2 unramified extension

of Qp, and we again let p be the uniformizer. Lastly, throughout this section we denote

our level structures Ui(nπs) simply by Ui(nps), where π is as is Notation 4.1.14.1.1.

(2) Let ψ : (Op/ps)× → O×Cp denote a finite continuous character. We also let ψ denote

1In fact d = 2, 5, 13, 17 are the only such examples, see [KV10KV10].
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the induced character on O×p .

(3) Let n be an ideal of OF which is coprime to p.

(4) Let L be as before, but enlarged to contain the image of ψ (in particular, in the split

case this is some totally ramified extension of Qp and in the inert case this is a totally

ramified extension of Fp).

From Section 4.14.1 we have that, in this setting, the spaces of overconvergent

quaternionic modular forms are defined as follows:

Definition 7.0.2. Let D×f := GD(Af ) and D× := GD(Q). The space of overconver-

gent quaternionic modular forms of weight (κψ, r), level U = U0(nps), and radius of

overconvergence p0, denoted by SD,†κψ ,r(U0(nps), 0), is defined as the vector space of

functions

f : D×\D×f −→ L〈X,Y 〉

such that f(dg) = f(g) for all d ∈ D× and f(gu−1) ·κψ up = f(g) for all u ∈ U0(nps)

and g ∈ D×f . Here the action of γ =
(
a b
c d

)
=
((

ai bi
ci di

))
∈ ∆ on L〈X,Y 〉 is given by

X lY m ·κψ γ = ψ(d)H(γ1, X, l)H(γ2, Y,m),

where

H(γi, Z, t) = (aidi − bici)vi(ciZ + di)
ni

(
aiZ + bi
ciZ + di

)t
,

∆ is as in Notation 4.1.14.1.1 and (κψ, r, n, v, w) is a weight tuple.

Remark 7.0.3. In order for the space of modular forms of weight (κ, r)ψ to be non-trivial,

one requires that ψ(x) = NF/Q(x)r for all x ∈ O×F , which we view as embedded in O×p
in the usual way.

Remark 7.0.4. In the split case, it is clear how to write γ as
((

api bpi
cpi dpi

))
by using the

completions of p1, p2. In the inert case, we simply let the γi be the images of γ under the

automorphisms of Fp.

Notation 7.0.5. Throughout this section we will always work with overconvergent modular

forms with radius of overconvergence p0 = 1, so we will simply denote these spaces by

SD,†κψ ,r(U0(nps)). This is not a problem, as one can show that the characteristic polynomial

of Up does not depend on this radius.

Since D is totally definite, we have from before that YD(U) = D×\D×f /U is just

a finite number of points, which we called the class number of (D,U). Moreover, since
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D has class number one, then D×f = D×Ô×D and D×\D×f = O×D\Ô
×
D. Thus there is a

bijection

D×\D×f /U −→ O
×
D\Ô

×
D/U

and we can write Ô×D =
∐h
i=1O

×
DtiU for ti suitable representatives. In what follows we

will use the above decomposition to write an element x ∈ D×f as du where d ∈ D×, u ∈
Ô×D . Moreover, we can use the above bijection to then write u = d′tiγ (for some i) where

d′ ∈ O×D and γ ∈ U0(nps). Now, following Dembélé [Dem05Dem05], we find the ti by observing

that

O×D\Ô
×
D/U = O×D\P

1(OF /nps)

where P1(A) :=
{

(a, b) ∈ A2 | ∃(α, β) ∈ A2 such that αa− βb = 1
}
/A×. We note that

P1(OF /nps) =
∏
q|nps

P1(OF /qeq).

From this we can find the ti by simply picking a representative

(a, b) = (aq, bq)q|nps ∈ P1(OF /nps)

for each O×D-orbit, and then lifting this to the element of Ô×D which is 1 at all places not

diving np and, at the places dividing the level, we take (αq, βq) ∈ (OF /qeq)2 such that

aqαq − bqβq = 1 and set (ti)q =
(
aq bq
βq αq

)
.

Lemma 7.0.6. There is an isomorphism

SD,†κψ ,r
(U)

∼−→
h⊕
i=1

L〈X,Y 〉Γi(U) ( )

given by sending f to (f(ti))i, where Γi(U) is as in 1.3.41.3.4.

Proof. Let f ∈ SD,†κψ ,r(U). For g ∈ D×f we can decompose it as g = dtiγ for some i,

d ∈ D× and u ∈ U . Now the image of g in (some) L〈X,Y 〉 under f is given by

f(g) = f(dtiγ) = f(tiγ) = f(ti) · up.

Therefore it is enough to know where the ti are sent. But note that if u ∈ Γi(U), then

γ = t−1
i dti for some d ∈ D× and thus

f(ti) = f(tit
−1
i dti) = f(ti) · up,

from which we see that the image must be in L〈X,Y 〉Γi(U).
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7.1 The Up operator

We now study the Up operator acting on these spaces. In particular, we will describe how

one can compute it. From now on we let U = U0(nps) be sufficiently small.

Notation 7.1.1. In this chapter we use a slightly different convention for weight [2, 2]

modular forms on D. It is customary to define S2(U) as a quotient S(U)/ Inv(U), where

Inv(U) is a subspace of forms that factor through the reduced norm map (cf. Definition

1.2.91.2.9 (e)). But for our purposes we do not quotient out by Inv(U), so in weight [2, 2] our

definitions are slightly different from the standard ones, in particular, our spaces are

slightly larger (dim(S(U)) = dim(S2(U)) + 1).

Let e denote the fundamental unit in O×F and let (κψ, r) be an arithmetic weight

such that κψ(e) = NF/Q(e)r, which means that Γi(U) acts trivially on L〈X,Y 〉 (by our

sufficiently small assumption). Then from ( ) we have the following commutative

diagram

SD,†κψ ,r(U)
∼ //

Up

��

h⊕
i=1
L〈X,Y 〉

Up

��

SD,†κψ ,r(U)
∼ //

h⊕
i=1
L〈X,Y 〉.

Therefore, in order to compute the action of Up, it is enough to compute Up. Now

we have the following well-known result:

Proposition 7.1.2. Each double coset [UηpU ] (see Notation 4.3.24.3.2) can be written as∐
α∈Op/πp

U
(

πp 0

απ
sp
p 1

)
.

From this it follows that the action of Up is given by

(f |Up)(g) =
∑

α∈Op/πp

f |uα(g)

for g ∈ D×f , and where uα =
(

πp 0

απ
sp
p 1

)
.
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Definition 7.1.3. For each ti as above define

Θ(i, j) := {α ∈ Opi/πpi | tiu−1
α = dtjγα, for some d ∈ D×, γα ∈ U}

and let Ti,j =
∑

β∈Θ(i,j)(γβuβ)p. Here uβ =
(

πp 0

βπ
sp
p 1

)
.

Proposition 7.1.4. The matrices (γβuβ)p are in
(
πO×p Op
πsOp O×p

)
where πs is the wild level.

Proof. The proof follows mutatis mutandis from the proof of [LWX14LWX14, Proposition

3.1].

Proposition 7.1.5. The action of Up is given by a h× h block matrix, whose (i, j)-block is

given by the (infinite) matrix of the action of Ti,j on L〈X,Y 〉.

Proof. By Lemma 7.0.67.0.6 we have that the action is given by

(f |Up)(ti) =
∑

α∈Opi/πpi

f |uα(ti)

=
∑

α∈Opi/πpi

f(tiu
−1
α ) · (uα)p

=
h∑
j=1

f(tj) ·

 ∑
β∈Θ(i,j)

(γβuβ)p


which gives the result.

Similarly we can do all of the above for Up and this gives the matrix Up.

Warning 7.1.6. With these definitions, the Up operators that we get will not be normalized

as in [Hid88Hid88, Section 3]. For this we need to work with π−vp(k,r)
p Up, which we will do

later.

We now show how to write down the matrices Ti,j . For this we use the standard

trick of using a generating function to get the entries of the corresponding matrix.

Proposition 7.1.7. The generating function for the |κψ ,r action of γ =
(
a b
c d

)
=
((

ai bi
ci di

))
=

(γ1, γ2) ∈M2(Op), with (κψ, r) an arithmetic weight, is given by

ψ(d) · det(γ1)v1(c1X + d1)n1+1

(c1X + d1 − a1XZ − b1Z)
· det(γ2)v2(c2Y + d2)n2+1

(c2Y + d2 − a2YW − b2W )
,

where (κψ, r, n, v, w) is a weight tuple.
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Proof. The action of |κψ ,rγ on L〈X,Y 〉 is given by

XiY j |γ = ψ(d)H(γ1, X, i)H(γ2, Y, j) =
∑
l,k

a
(i,j)
l,k X lY k

where H(γi, Z, t) = det(γi)
vi(ciZ + di)

ni
(
aiZ+bi
ciZ+di

)t
. Now consider the formal sum

G(X,Y,W,Z, γ) =
∑

i,j,l,k a
(i,j)
l,k X lY kZiY j , then

G(X,Y,W,Z, γ) =
∑
i,j

ZiW j
∑
l,k

a
(i,j)
l,k X lY k

=
∑
i,j

ZiW jψ(d)H(γ1, X, i)H(γ2, Y, j)

= E · (c1X + d1)n1(c2Y + d2)n2
∑
i

Zi
(
a1X + b1
c1X + d1

)i∑
j

W j

(
a2Y + b2
c2Y + d2

)j
where E = ψ(d) det(γ1)v1 det(γ2)v2 . The result then follows by noting that

∑
i

Zi
(
a1X + b1
c1X + d1

)i
=

1

1− Z
(
a1X+b1
c1X+d1

)
and similarly for the last term.

From this we get an expression for a(i,j)
l,k .

Proposition 7.1.8. With the notation as above, we have that the coefficient of XiY kZjW l

in G(X,Y, Z,W, γ) is

ψ(d) det(γ1)v1 det(γ2)v2 · Cn1(γ1, j, i) · Cn2(γ2, l, k)

where

Cw
((

a b
c d

)
, x, y

)
=

x∑
t=0

(
w − y
t

)(
y

x− t

)
ax−tctdw−x−tby−x+t.

Proof. The proof of this expression is a simple matter of expanding the power series,

which is an un-illuminating computation. Similar results can be found in [Jac03Jac03, Appendix

A].

88



7.1.9. In order to write down the matrix for Up we need to choose a basis of L〈X,Y 〉.
The natural choice of basis for this is the one given by XiY j for i, j ∈ Z≥0. Now in order

to compute the finite approximations to the infinite matrix of Up, we will need to choose an

ordering of this basis, which is the same as choosing a bijection Bi : Z≥0 × Z≥0 → Z≥0.

In what follows we will choose the ‘diagonal’ ordering given by

Bi(a, b) =
(a+ b+ 1)(a+ b)

2
+ b

and Bi−1(m) =
(
m− t(t+1)

2 , t(t+3)
2 −m

)
where t =

⌊
−1+

√
1+8m

2

⌋
. Lastly, for Bi−1(m) =

(m1,m2) set b(m) = m1 + m2 = t. Note that, from the computational point of view,

some choices will mean computation of the slopes stabilize quicker, which is why we use

this bijection.

Remark 7.1.10. In what follows the choice of Bi will only be for relevant for computational

purposes and not theoretical. The only reason we keep track of if in the results in this

section is that we wish to work with matrices and not hypermatrices. Therefore, our

theoretical results do not depend in an essential way in our choice of ordering.

It then follows from Proposition 7.1.87.1.8 that:

Corollary 7.1.11. Let x1, x2, y1, y2 ∈ Z≥0 and

γ =

(
a b

c d

)
=

((
πiai bi

ciπ
si
i di

))
∈ U.

Let x = Bi(x1, x2) (similarly for y) and let (κψ, r, n, v, w) be a weight tuple with (κ, r)ψ

an arithmetic weight. Then the x, y entry of the matrix representing the |κψ ,r γ action on
L〈X,Y 〉 is given by

Ωκψ ,r(γ, x, y) := E · dn1
1 dn2

2 πx1
1 πx2

2

ax1
1

dy1
1

ax2
2

dy2
2

by1−x1
1 by2−x2

2 Cn1(γ1, x1, y1) · Cn2(γ2, x2, y2)

where E := ψ(d) det(γ1)v1 det(γ2)v2 and

Cni(γi, xi, yi) =

xi∑
t=0

(
ni − yi
t

)(
yi

xi − t

)(
bici
aidi

)t
π
t(si−1)
i

for i ∈ {1, 2} corresponding to p1, p2.

Corollary 7.1.12. Let γ =
((

πiai bi
ciπ

si
i di

))
∈ U and (κψ, r, n, v, w) a weight tuple with

(κψ, r) an arithmetic weight. Then matrix for the weight (κ, r)ψ action of γ in L〈X,Y 〉 is
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such that the (x, y)-th entry has p-adic valuation at least

b(x) + g(n1, x1, y1)(s1 − 1) + g(n2, x2, y2)(s2 − 1)

where xi, yi ∈ Z≥0 and x = Bi(x1, x2), y = Bi(y1, y2) and

g(ni, xi, yi) =



∞ if xi > ni ≥ yi,

xi if yi = 0,

0 if yi ≥ xi,

xi − yi if yi < xi.

(Note that having infinite p-adic valuation means that the entry of the matrix is zero.)

Proof. This follows at once from Proposition 7.1.47.1.4 together with Corollary 7.1.117.1.11 and noting

that g(ni, xi, yi) is either∞ or the first non-zero t for which
(
ni−yi
t

)(
yi
xi−t

)
6= 0.

7.2 Slopes of Up operators

In this section, we want to study the structure of the matrix of Up and understand its

slopes. We will begin by recalling some results on Newton polygons of matrices. Then

we will change basis so that Up becomes an infinite block matrix, with blocks having size

h× h and then study these blocks, in particular, the ones lying on the diagonal. Lastly,

we will give a criterion (which can be checked in finite time) for when the block upper

triangular submatrix Up of Up has slopes given by unions of arithmetic progressions. The

importance of Up is that, based on computational evidence, we expect it to have the same

Newton polygon (and hence slopes) as Up.

Definition 7.2.1. If K is a local field and A ∈ Mn(K) is a matrix, then we define the

Newton polygon of A to be the Newton polygon of det(1−XA), and denote it NP(A)

and we denote its slopes by S(A).

In particular, we will talk about the Newton polygon of Up, by which we mean the

Newton polygon of the matrix associated to Up when seen as a linear map on the space

of (overconvergent) Hilbert modular forms.

Let us now recall some basic properties of Newton polygons of matrices. More

details can be found in [Ked10Ked10].

Definition 7.2.2. Let A be a n × n matrix over a local field K with uniformizer $.

Moreover, let s1, s2, . . . , sn be such that for i ∈ {1, . . . , n}, s1 + · · ·+ si is the minimal

valuation of an i × i-minor of A. Then the si are called the elementary divisors of
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A and σi(A) = σi = $−si are the singular values of A. Note that, σ1(A) = |A| =

maxi,j{|Ai,j |}.

Theorem 7.2.3. Let A,B be n × n matrices. Let P (T ) = 1 +
∑

i aiT
i and Q(T ) =

1 +
∑

i ciT
i denote det(1−XA) and det(1−X(A+B)) respectively. Then

|ai − ci| ≤ |B|
i−1∏
j=1

max{σj(A), |B|}.

Proof. This is [Ked10Ked10, Theorem 4.4.2] translated into the notation of Fredholm determi-

nants instead of characteristic polynomials.

Corollary 7.2.4. Let A,B,P ,Q be as in Theorem 7.2.37.2.3 and let

f(A,B, i) = |B|
i−1∏
j=1

max{σj(A), |B|}.

If for all i ∈ {1, . . . , n}, |ai| > f(A,B, i) then NP(A+B) = NP(A).

Proof. If |ai| > f(A,B, i), then by Theorem 7.2.37.2.3, we must have |ai| = |ci|, from which

it follows that the Newton polygons must be the same.

Proposition 7.2.5. Let A1, . . . , Am be a set of n× n matrices over a non-archimedean field
K . Then

NP

(⊕
i

Ai

)
=
∑
i

NP(Ai)

where on the right ‘sum’ is given by the Minkowski sum, i.e., NP(A) + NP(A′) = {~a+ ~a′ |
~a ∈ NP(A),~a′ ∈ NP(A′)}.

Proof. This follows by noting that the characteristic polynomial of a direct sum is a

product of the characteristic polynomials of the factors together with the fact that the

Newton polygon of a product of polynomials is the same as the Minkowski sum of the

Newton polygons.

7.2.6. Recall that under the isomorphism

SD,†κψ ,r
(U)

∼−→
h⊕
i=1

L〈X,Y 〉,

the matrix of Up is a block h×h matrix22, whose (i, j)-block is given by the infinite matrix

2Here h is the class number of (D,U).
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of the action of Ti,j . Now, there is a natural basis33 of
⊕h

i=1 L〈X,Y 〉 such that the matrix

of Up becomes an infinite block matrix where each block has size h× h. Moreover, since

Ti,j =
∑

β∈Θ(i,j)(γβuβ)p, we have that, in the new basis, the (x, y)-block of Up is given

by

Bκψ ,r(x, y) := (F
κψ ,r
i,j (x, y))i,j

where

F
κψ ,r
i,j (x, y) =

∑
β∈Θ(i,j)

Ωκψ ,r((γβuβ)p, x, y)

and i, j ∈ {1, . . . , h}.

Definition 7.2.7. We call these Bκψ ,r(x, y) the overconvergent blocks of Up on S
D,†
κψ ,r(U).

Notation 7.2.8. For later use we denote by Ω
(p)
κψ ,r(γ, x, y) = Ωκψ ,r(γ, x, y)/pb(x). Simi-

larly, let

F
κ,r,(p)
i,j (x, y) =

∑
β∈Θ(i,j)

Ω(p)
κψ ,r

((γβuβ)p, x, y)

and B(p)
κψ ,r(x, y) = (F

κψ ,r,(p)
i,j (x, y))i,j .

We now make some observations about these overconvergent blocks which we will

use later to try and understand the behaviour of the slopes.

Notation 7.2.9. Let x1, x2 ∈ Z≥0. We let B̃κψ ,r(x1, x2), F̃
κψ ,r
i,j (x1, x2), Ω̃κψ ,r(γ, x1, x2),

etc denote Bκψ ,r(x, x), F
κψ ,r
i,j (x, x),Ωκψ ,r(γ, x, x), etc where x = Bi(x1, x2). This there-

fore corresponds to the blocks along the diagonal.

Note that, if the matrix of Up (or equivalently Up) is given by a infinite h × h
block matrix, then B̃κψ ,r(x1, x2) is the block corresponding to the basis element Xx1Y x2 .

Moreover, note that the entries of these block matrices are given by functions Z2 → OL.
Our goal is to understand these functions. Specifically, if we think of the coefficients

of the characteristic polynomial of B̃(p)(x1, x2) as functions Z2 → OL then we would

like to know their p-adic valuations for all xi. In particular, we would like to know if

the have they form pn · f(x1, x2) for some function f (taking values in O×L ) and some

explicit constant n. Knowing this would at once give the slopes of B̃(p)(x1, x2) for all xi.

With this in mind, we will use the fact that for uniformly continuous functions one can

obtain such a decomposition after checking finitely many values (cf. Lemma 7.2.197.2.19). Our

conjecture is that the B̃(p)(x1, x2) are uniformly continuous in x1, x2, but unfortunately

we cannot at this time prove this (c.f. 7.2.137.2.13).44

3This is given by grouping the basis elements in each copy by degree.
4Note that here we are using B̃(p)(−,−) so we have taken out the factors at p, since otherwise function

could not be uniformly continuous.

92



Definition 7.2.10. A function f : Z→ OL is called uniformly continuous on Z (viewed

as a subspace of Zp) if for every δ there exists ε = εf (δ) independent of x, x0 such

that if x, x0 ∈ Z and |x − x0| < ε then |f(x) − f(x0)| < δ. More generally, a function

f : Zn → OL is uniformly continuous on Zn if for every δ, there exists a ε = εf (δ)

independent of x, x0 ∈ Zn such that if maxi(|xi − x0,i|) < ε then |f(x)− f(x0)| < δ.

In practice, one can use the Mahler basis to ‘see’ when a continuous function is

uniformly continuous, as follows:

Theorem 7.2.11. A function f : Zn → OL is uniformly continuous on Zn if and only if
|am|p → 0 as

∑n
i=1mi →∞, where am are the Mahler coefficients of f .

Proof. See [Mah81Mah81, Section 12, Theorem 1].

Proposition 7.2.12. The sum and product of uniformly continuous functions is again a

uniformly continuous function.

Proof. See [Mah81Mah81, Section 8, Theorem 5].

Conjecture 7.2.13. For fixed ni (i.e. fixing the algebraic part of the weight) the functions

C̃ni(γ, xi, xi) : Z −→ OL

(from Proposition 7.1.87.1.8) are uniformly continuous in xi (where Z ⊂ Zp has the p-adic topology)
with εC̃(δ) < δ + 1.

Remark 7.2.14. For the above function we have checked computationally in many cases

that the Mahler coefficients tend to zero p-adically, which lead us to formulate such a

conjecture.

Notation 7.2.15. Set t = tL to be the order of the torsion subgroup of O×L .

Proposition 7.2.16. Let α ∈ O×L and let P (n, α) = αn. Then the function P (n, αt) is

uniformly continuous as a function Z→ O×L .

Proof. The proof of this is just as in [Mah81Mah81, Chapter 14, Section 6].

Corollary 7.2.17. Assume 7.2.137.2.13. Then, for fixed weight and fixed s1, s2 ∈ {0, . . . , t − 1},
the function

B̃(p)
κψ ,r

(s1 + tx1, s2 + tx2) : Z2 −→ Math×h(OL)

(see 7.2.87.2.8) is uniformly continuous in x1, x2.

Proof. This follows at once from Proposition 7.2.167.2.16 and our assumption since the entries

of B̃(p)
κψ ,r are given by sums of functions that are uniformly continuous.
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Now, as B̃(p)
κψ ,r(s1 + tx1, s2 + tx2) is a h× h matrix with entries given functions

Z2 → OL, Corollary 7.2.177.2.17 gives:

Corollary 7.2.18. Assume 7.2.137.2.13. Then, for fixed weight, the coefficients of the characteristic

polynomial of

B̃(p)
κψ ,r

(s1 + tx1, s2 + tx2)

are given by uniformly continuous functions Coefi(s1 + tx1, s2 + tx2) (here we are suppressing

the dependence on the weight) which are uniformly continuous in xi.

Proof. This follows at once from the fact that the entries of the matrix are given by

uniformly continuous functions and the coefficients of the characteristic polynomial are

given as sums and products of these functions.

Later, we will compute (in specific cases) the Newton polygon of Up and we will

make some conjectures on the behaviour of the slopes. Proving these conjectures seems

out of reach with our current machinery, but we will give a criterion55 for there to exist a

submatrix of Up whose Newton polygon matches the conjectural Newton polygon of Up as

suggested by our computations. In the case that we are interested in this submatrix will

be the block upper triangular submatrix of Up.

The criterion is based on the following elementary result:

Lemma 7.2.19. Let f : Z→ OL be a uniformly continuous function. If valp(f(x)) = µ for

all x ∈ 0, . . . , pvalp(εf (µ+1)) then valp(f(x)) = µ for all x ∈ Z, where εf is as in Definition
7.2.107.2.10.

Proof. Let T = valp(εf (µ + 1). For x ∈ Z we write it as x = xi + spT with xi ∈
{0, . . . , pT } and for some s ∈ Z. Now, since f is uniformly continuous, we know

that since |x − xi|p ≤ p−T we must have |f(x) − f(xi)|p ≤ p−µ−1. But now, since

valp(f(xi)) = µ, we must have valp(f(x)) = µ.

Corollary 7.2.20. Let Coefi(s1 + tx1, s2 + tx2) be as in Corollary 7.2.187.2.18. Assume that for

each pair (s1, s2) ∈ {0, . . . , t− 1}2 there is a µi(s1, s2) = µ ∈ Z such that

valp(Coefi(s1 + tx1, s2 + tx2)) = µi(s1, s2)

for all x1, x2 ∈ {0, . . . , pT } with T = εCoefi(µ+ 1). Then

valp(Coefi(s1 + tz, s2 + tw)) = µi(s1, s2)

for all z, w ∈ Z.
5Which one can check in finite time (although this might be take a very long time).
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Proof. The proof of this is just a natural generalization of the Lemma 7.2.197.2.19.

Remark 7.2.21. Looking closely at Proposition 7.2.167.2.16 and Conjecture 7.2.137.2.13, one sees that

εCoefi(µ) ≤ µ (in fact, we suspect that in many cases it is ≤ dµ/ie). This then tells us

how far we need to check.

Remark 7.2.22. Note that both Lemma 7.2.197.2.19 and Corollary 7.2.207.2.20 remain valid if we

replace valp(−) = µ with valp(−) ≥ µ, where µ is now the maximum such integer for

which this holds for all pairs of si.

Corollary 7.2.23. Assume 7.2.137.2.13. Let κ be a fixed arithmetic weight. For s1, s2 ∈ {0, . . . , t−
1}, let

µmax = µmax(s1, s2) =
h

max
i=0

µi(s1, s2)

(with the same notation as above) and letm be the index of Coef corresponding to µmax. If for

fixed s1, s2, the slopes of B̃
(p)
κψ ,r(s1 + tx1, s2 + tx2) are fixed for all x1, x2 ∈ {0, . . . , pT }

with T = εCoefm(µmax + 1), then the slopes of B̃(p)
κψ ,r(s1 + tz, s2 + tw) will be fixed for all

z, w ∈ Z.

Proof. Using Corollary 7.2.207.2.20, we see that our assumptions imply that the break points of

our Newton polygon are fixed, so the slopes must be fixed.

Remark 7.2.24. We note that, in the above, we do not require that the non-break points in

{(i, valp(Coefi))} have fixed valuation, but only that they lie above the Newton polygon.

The importance of this result, is that it gives us a way to check for (in finite time)

what all of the slopes of the blocks appearing along the diagonal of Up are (for a fixed

weight).

7.2.25. Let DiagBi(p, h) denote the infinite diagonal matrix with entries given by

1, . . . , 1︸ ︷︷ ︸
h

, p, . . . , p︸ ︷︷ ︸
h

, . . . , pb(n), . . . pb(n)︸ ︷︷ ︸
h

, . . . .

It then follows from 7.1.127.1.12 that the matrix Up = DiagBi(p, h) · U(p)
p where U

(p)
p is an

infinite h × h- block matrix whose entries are given by B(p)
κψ ,r(x, y). Lastly, we let Up

denote the block upper triangular sub matrix of Up whose blocks have size h× h and the

(x, y)-block is given by Bκψ ,r(x, y) if y ≥ x and zero otherwise. Note that we can again

write Up = DiagBi(p, h)U
(p)
p .

Lemma 7.2.26. Let κ be fixed and assume that for all s1, s2 ∈ {0, . . . , t − 1} Corollary
7.2.237.2.23 holds, meaning that for each pair (s1, s2) we have a finite set Sκψ ,r(s1, s2) of slopes

95



which will be the slopes of B̃(p)
κψ ,r(s1 + tz, s1 + tw) for all z, w ∈ Z. Then the slopes of Up

are given by

Sκψ ,r(Up) =
∞⋃
x=0

{S(x1, x2) + b(x)} ,

where b(x) is as in 7.1.97.1.9 and xi = xi mod t. Here for a set of rational numbers S we let

S + a = {s+ a | s ∈ S}.

Proof. First note that, since Up is block upper triangular, its characteristic polynomial

only depends on the blocks along the diagonal. Now, the n-th block along the diagonal

will be given by pb(n)B̃
(p)
κ (x1, x2) and by assumption, the slopes of B̃(p)

κ (x1, x2) only

depend on xi mod t. So, putting this together with the fact that if a matrix A has a set

of slopes S(A) then S(pnA) = n+ S(A), we get the required result.

One important thing to note is that in this case the set of slopes of Up will be

given by a union of arithmetic progressions and that the infinite set Sκ(Up) is ‘generated’

by a finite sets S(s1, s2) for si ∈ {0, . . . , t− 1}.

7.2.27. Now not only do we care about the slopes for a fixed weight, but we would like

to know what they all are, at least for weights near the boundary of the weight space.

Although this is quite a tough problem in general, we can say something about the set

Sκ(Up) for κψ, r as the algebraic part of the weight varies.

Looking closely at Corollary 7.1.117.1.11, we see that for fixed character ψ and fixed x, y

we have

Ωκψ ,r(γ, x, y) = (Constant) · det(γ1)v1 det(γ2)v2dn1
1 dn2

2 Cn1(γ1, x1, y2)Cn2(γ2, x, y)

where the constant depends on ψ. Now, if we use Hida’s normalization for Up (i.e. U0
p )

then the factors det(γ1)v1 det(γ2)v2 disappear so we are reduced to looking at the factors

W (n1, n2) = dn1
1 dn2

2 Cn1(γ1, x1, y1)Cn2(γ2, x2, y2).

Similar to the above, we see that for fixed w1, w2 ∈ {0, . . . , t− 1} we have that W (w1 +

tn1, w2 + tn2) is uniformly continuous in ni. Using this, let B̃
(p)

(x1, x2, n1, n2) denote

B̃
(p)
κψ ,r(x1, x2) but now viewed as a function of ni (the algebraic part of the weight) and xi.

Proposition 7.2.28. Assume that for each quadruple w1, w2, s1, s2 ∈ {0, . . . , t − 1} the
slopes of

B̃(p)(s1 + tx1, s2 + tx2, w1 + tn1, w2 + tn2)

are fixed for all x1, x2, n1, n2 ∈ {0, · · · , pT } with T = εCoefm(µmax +1) (with the notation

as in Corollary 7.2.237.2.23). Then, assuming 7.2.137.2.13, the slopes of B̃(p)(x1, x2, n1, n2) depend only
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on xi, ni mod t and in particular, Sκψ ,r(Up) depends only on xi, ni mod t and is generated

as in Lemma 7.2.267.2.26.

Proof. Since B̃(p)(s1 + tx1, s2 + tx2, w1 + tn1, w2 + tn2) is uniformly continuous in xi, ni
the proof is just a generalization of Corollary 7.2.237.2.23 and Lemma 7.2.267.2.26.

Note that depending only on ni mod t is the same as only depending on which

component of the weight space we are in. Therefore, Proposition 7.2.287.2.28 is saying that

if the slopes Up are fixed for enough ni, xi, then Sκψ ,r(Up) will only depend on the

component of the weight space and moreover the slopes will appear as a union of

arithmetic progressions, which are generated by a finite input. This is exactly what

one would expect the structure of the slopes of Up to be. In fact, our computations

suggest (cf. 8.3.68.3.6) that in many cases (but not all) Proposition 7.2.287.2.28 holds and that

Sκψ ,r(Up) = Sκψ ,r(Up).

7.3 Lower bounds for Newton polygons of Up operators

We will now prove a lower bound on the Newton polygon of the characteristic polynomial

of Up. This is very much inspired by [WXZ14WXZ14, Theorem A].

Proposition 7.3.1. Let U be a sufficiently small level and let (κ, r) be any arithmetic weight.

Then the Newton Polygon of the action of Up on

SD,†κ,r (U) ∼=
h⊕
i=1

L〈X,Y 〉

lies above the polygon with vertices

(0, 0), (h, 0), (3h, 2h), . . . ,

(
i(i+ 1)h

2
,
(i− 1)i(i+ 1)h

3

)
, . . . .

Proof. We do this by giving a lower bound for the Hodge polygon of the Up action, which

we recall is always below the Newton polygon.

Now recall that the Hodge polygon is given by the lower convex hull of the vertices

(i,minn), where minn is the minimal p-adic valuation of the determinants of all n× n
minors. Note that it clearly lies below the Newton polygon. Now Corollary 7.1.127.1.12 gives

that each h × h block Bκ(x, y) is divisible by pb(x) and note that {b(n)|n ∈ Z≥0} =

{0, 1, 1, 2, 2, 2, 3, 3, 3, 3, . . .}. Using this we can bound the Hodge polygon from below

as follows: let S = {si} := {0h, 12h, 23h, 34h, . . . , i(i+1)h, . . .} where in means that i

appears n times and let Σi =
∑

j≤i sj . Then from the above it is easy to see that the
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Hodge polygon is bounded from below by the convex hull of the points (i,Σi). An easy

check then shows that this has break-points at the vertices given above.

Note that we are not assuming that the weight lies on the boundary of the weight

space. In particular, this lower bound holds everywhere on the weight space.
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Chapter 8

Explicit computations

In this section we report on the results of some computations of slopes of Up, for p a split

or inert prime. The computations below were done in Magma [BCP97BCP97] and Sage [Sag16Sag16].

Notation 8.0.1. In this section we will use convention given in 1.2.81.2.8 for our weights.

Using this we will denote arbitrary arithmetic weights as κ and if we want to specify the

character we will denote them as [k1, k2]ψ where ki ∈ Z≥2 and paritious. We will also

denote vp(k, r) by vp(k).

Warning 8.0.2. When computing slopes of overconvergent Hilbert modular forms our

strategy is to compute a finite matrix Up(N,κ) which is a N ×N approximation to the

infinite matrix of Up acting on weight (κ) overconverget Hilbert modular forms. The

fact that Up is compact means that we can find a function B such that any vertex of

NP(Up(B(N), κ)) of valuation less than N , will also be a vertex of NP(Up(M,κ)) for

M ≥ B(N). So we can guarantee that the approximation slopes are actually slopes of

overconvergent Hilbert modular forms. Here B is a function that depends on the ordering

of the basis of the matrix. If we use Bi as in 7.1.97.1.9 to order the basis, then b b(N)
h c bounds

11

B(N) from below, where (as before) b(N) =
⌊
−1+

√
1+8N

2

⌋
and h is the class number for

(D,U). Throughout this chapter, when we talk about overconvergent slopes, we mean

approximated overconvergent slopes.

In the classical case we do not have this problem and all of the slopes we have

computed are actually slopes of classical Hilbert modular forms.
1This is most likely not the optimal bound.

99



8.1 Split case

8.1.1 Computations over Q(
√
13)

Let F = Q(
√

13) and p = 3. We will compute the slopes of U3 on the space of modular

forms of U0(9) for weights near the boundary. We note here that U0(9) is sufficiently

small, which we checked computationally. In this case we find that h = 12, where h is

the class number of (D,U) with D/F totally definite with Disc(D) = 1 as usual. We

let ψr be a continuous character of O×p of conductor 9 such that ψr(α) = NF/Q(α)r for

α ∈ O×F . In the following table we list the slopes of classical Hilbert modular forms as a

pair (s,m) where s is the slope and m is how many times it appears, i.e., its multiplicity

(up to this size of matrix), also we have normalized so that valp(p) = 1. Note that in our

setting we have Up = Up1Up2 . We also record here the classical slopes of Up1 , Up2 .

Operator Weight Classical Slopes

Up [2, 2]ψ2 (0, 1), (1/2, 2), (1, 6), (3/2, 2), (2, 1)

Up1 [2, 2]ψ2 (0, 3), (1/2, 6), (1, 3)

Up2 [2, 2]ψ2 (0, 3), (1/2, 6), (1, 3)

Up [2, 4]ψ2 (0, 1), (1/2, 2), (1, 7), (3/2, 4), (2, 8), (5/2, 4), (3, 7), (7/2, 2),

(4, 1)

Up1 [2, 4]ψ2 (0, 9), (1/2, 18), (1, 9)

Up2 [2, 4]ψ2 (0, 3), (1/2, 6), (1, 6), (3/2, 6), (2, 6), (5/2, 6), (3, 3)

Up [2, 6]ψ2 (0, 1), (1/2, 2), (1, 7), (3/2, 4), (2, 8), (5/2, 4), (3, 8), (7/2, 4),

(4, 8), (9/2, 4), (5, 7), (11/2, 2), (6, 1)

Up1 [2, 6]ψ2 (0, 15), (1/2, 30), (1, 15)

Up2 [2, 6]ψ2 (0, 3), (1/2, 6), (1, 6), (3/2, 6), (2, 6), (5/2, 6), (3, 6), (7/2, 6),

(4, 6), (9/2, 6), (5, 3)

Up [2, 8]ψ2 (0, 1), (1/2, 2), (1, 7), (3/2, 4), (2, 8), (5/2, 4), (3, 8), (7/2,
4), (4, 8), (9/2, 4), (5, 8), (11/2, 4), (6, 8), (13/2, 4), (7, 7),
(15/2, 2), (8, 1)

Up1 [2, 8]ψ2 (0, 21), (1/2, 42), (1, 21)

Up2 [2, 8]ψ2 (0, 3), (1/2, 6), (1, 6), (3/2, 6), (2, 6), (5/2, 6), (3, 6), (7/2, 6),

(4, 6), (9/2, 6), (5, 6), (11/2, 6), (6, 6), (13/2, 6), (7, 3)

Up [4, 4]ψ2 (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 16), (5/2, 10), (3, 22),

(7/2, 10), (4, 16), (9/2, 6), (5, 8), (11/2, 2), (6, 1)

Up1 [4, 4]ψ2 (0, 9), (1/2, 18), (1, 18), (3/2, 18), (2, 18), (5/2, 18), (3, 9)

Up2 [4, 4]ψ2 (0, 9), (1/2, 18), (1, 18), (3/2, 18), (2, 18), (5/2, 18), (3, 9)
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Up [4, 6]ψ2 (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 16), (5/2, 10), (3, 23),

(7/2, 12), (4, 24), (9/2, 12), (5, 23), (11/2, 10), (6, 16),

(13/2, 6), (7, 8), (15/2, 2), (8, 1)

Up1 [4, 6]ψ2 (0, 15), (1/2, 30), (1, 30), (3/2, 30), (2, 30), (5/2, 30), (3, 15)

Up2 [4, 6]ψ2 (0, 9), (1/2, 18), (1, 18), (3/2, 18), (2, 18), (5/2, 18), (3, 18),

(7/2, 18), (4, 18), (9/2, 18), (5, 9)

Up [3, 3]ψ1 (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 14), (5/2, 6), (3, 8), (7/2, 2),

(4, 1)

Up1 [3, 3]ψ1 (0, 6), (1/2, 12), (1, 12), (3/2, 12), (2, 6)

Up2 [3, 3]ψ1 (0, 6), (1/2, 12), (1, 12), (3/2, 12), (2, 6)

Up [3, 5]ψ1 (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 15), (5/2, 8), (3, 16),

(7/2, 8), (4, 15), (9/2, 6), (5, 8), (11/2, 2), (6, 1)

Up1 [3, 5]ψ1 (0, 12), (1/2, 24), (1, 24), (3/2, 24), (2, 12)

Up2 [3, 5]ψ1 (0, 6), (1/2, 12), (1, 12), (3/2, 12), (2, 12), (5/2, 12), (3, 12),

(7/2, 12), (4, 6)

Up [3, 7]ψ1 (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 15), (5/2, 8), (3, 16),

(7/2, 8), (4, 16), (9/2, 8), (5, 16), (11/2, 8), (6, 15), (13/2, 6),

(7, 8), (15/2, 2), (8, 1)

Up1 [3, 7]ψ1 (0, 18), (1/2, 36), (1, 36), (3/2, 36), (2, 18)

Up2 [3, 7]ψ1 (0, 6), (1/2, 12), (1, 12), (3/2, 12), (2, 12), (5/2, 12), (3, 12),

(7/2, 12), (4, 12), (9/2, 12), (5, 12), (11/2, 12), (6, 6)

Up [3, 9]ψ1 (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 15), (5/2, 8), (3, 16),

(7/2, 8), (4, 16), (9/2, 8), (5, 16), (11/2, 8), (6, 16), (13/2, 8),

(7, 16), (15/2, 8), (8, 15), (17/2, 6), (9, 8), (19/2, 2), (10, 1)

Up1 [3, 9]ψ1 (0, 24), (1/2, 48), (1, 48), (3/2, 48), (2, 24)

Up2 [3, 9]ψ1 (0, 6), (1/2, 12), (1, 12), (3/2, 12), (2, 12), (5/2, 12), (3, 12),

(7/2, 12), (4, 12), (9/2, 12), (5, 12), (11/2, 12), (6, 12),

(13/2, 12), (7, 12), (15/2, 12), (8, 6)

Remark 8.1.2. There is an involution on the Hilbert modular variety which tells us that

the Up slopes in weight [k1, k2]ψ will be the same as those in weight [k2, k1]ψ.

Since our level is sufficiently small, one can show using 7.0.67.0.6, that the dimension

of the spaces of classical Hilbert modular forms of weight [k1, k2]ψi and level U0(9) is

12 · (k1 − 1) · (k2 − 1) for [k1, k2] 6= [2, 2]. For weight [2, 2] the dimension of the classical

space of cusp forms is 11, but since in our notation we are including the constant functions

(which, in this case, contributes a 1-dimensional subspace), we get a 12 dimensional space.

With this one can easily see that (as long as we order our basis correctly, which is not be the
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ordering given by Bi) in the table above, the classical slopes Up in weight κ = [k1, k2]ψ

are given by the slopes of U∗(N,κ) for N = 12 · (k1 − 1) · (k2 − 1) and ∗ ∈ {p, p1, p2}.
We now compute the overconvergent slope approximations for Up and the same

set of weights as in the classical case. Our computations suggest that for a fixed N and ψ,

the set of slopes of Up(N,κ) depend only on the component in which κ lies 22. For this

reason, the table below, we only record the size and the slopes.

Matrix Overconvergent Slopes

Up(20 · 12) (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 16), (5/2, 10), (3, 24), (7/2, 14),

(4, 32), (9/2, 18), (5, 39), (11/2, 20), (6, 35), (13/2, 10), (7, 5)

Up(22 · 12) (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 16), (5/2, 10), (3, 24), (7/2, 14),

(4, 32), (9/2, 18), (5, 40), (11/2, 22), (6, 42), (13/2, 14), (7, 12),

(15/2, 2), (8, 1)

Up(25 · 12) (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 16), (5/2, 10), (3, 24), (7/2, 14),

(4, 32), (9/2, 18), (5, 40), (11/2, 22), (6, 45), (13/2, 20), (7, 30),

(15/2, 8), (8, 4)

Up(28 · 12) (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 16), (5/2, 10), (3, 24), (7/2, 14),

(4, 32), (9/2, 18), (5, 40), (11/2, 22), (6, 48), (13/2, 26), (7, 48),

(15/2, 14), (8, 7)

Up(30 · 12) (0, 1), (1/2, 2), (1, 8), (3/2, 6), (2, 16), (5/2, 10), (3, 24), (7/2, 14),

(4, 32), (9/2, 18), (5, 40), (11/2, 22), (6, 48), (13/2, 26), (7, 50),

(15/2, 18), (8, 19), (17/2, 4), (9, 2)

Observation 8.1.3. (1) The slopes are appearing in arithmetic progression which is very

similar to what we see over Q.

(2) The multiplicities are not the same for each slope and are increasing, which is

something that one does not see over Q (cf. [LWX14LWX14, Therem 1.5]).

(3) In the classical slopes above one can observe the Atkin-Lehner involution in action.

We know from Section 3.23.2 that the Atkin-Lehner involution will send a Hilbert

modular form of slope α in Skψ(U0(9)) to a form of slope

valp(NF/Q(p)k0−1−vp(k))− α,

in Skψ−1 (U0(9)) where k0 = max(k1, k2). Now, in our example, ψ and ψ−1 are in

the same Galois orbit, so the slopes in weight kψ and kψ−1 will be the same. From

which one can deduce that in the classical slopes above one should be able to pair up

2In general, we expect that the factor valp(w(κ)) only scales the slopes linearly.
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the slopes appearing in weight [k1, k2] so that the slopes add up to

valp(NF/Q(p)k0−1−vp(k)),

which is the case33. Moreover, if instead we look at Atkin-Lehner involutions for each

pi for i ∈ {1, 2} we can make similar observations in these cases.

8.1.4 Computations over Q(
√
17)

We have also done a similar computation in the case when F = Q(
√

17), p = 2 and level

U0(8), which again is sufficiently small. Here h = 24 with ψ and χ appropriate characters

of conductor 8. In this case, we again see a similar structure to the set of slopes.

Operator Weight Classical slopes

Up [2, 2]ψ (0, 1), (1/2, 4), (1, 14), (3/2, 4), (2, 1)

Up1 [2, 2]ψ (0, 4), (1/2, 16), (1, 4)

Up2 [2, 2]ψ (0, 4), (1/2, 16), (1, 4)

Up [4, 2]ψ (0, 1), (1/2, 4), (1, 15), (3/2, 8), (2, 16), (5/2, 8), (3, 15),

(7/2, 4), (4, 1)

Up1 [4, 2]ψ (0, 4), (1/2, 16), (1, 8), (3/2, 16), (2, 8), (5/2, 16), (3, 4)

Up2 [4, 2]ψ (0, 12), (1/2, 48), (1, 12)

Up [4, 4]ψ (0, 1), (1/2, 4), (1, 16), (3/2, 12), (2, 32), (5/2, 20), (3, 46),

(7/2, 20), (4, 32), (9/2, 12), (5, 16), (11/2, 4), (6, 1)

Up1 [4, 4]ψ (0, 12), (1/2, 48), (1, 24), (3/2, 48), (2, 24), (5/2, 48), (3, 12)

Up2 [4, 4]ψ (0, 12), (1/2, 48), (1, 24), (3/2, 48), (2, 24), (5/2, 48), (3, 12)

Up [6, 2]ψ (0, 1), (1/2, 4), (1, 15), (3/2, 8), (2, 16), (5/2, 8), (3, 16),
(7/2, 8), (4, 16), (9/2, 8), (5, 15), (11/2, 4),(6, 1)

Up1 [6, 2]ψ (0, 4), (1/2, 16), (1, 8), (3/2, 16), (2, 8), (5/2, 16), (3, 8),

(7/2, 16), (4, 8), (9/2, 16), (5, 4)

Up2 [6, 2]ψ (0, 20), (1/2, 80), (1, 20)

Up [8, 2]ψ (0, 1), (1/2, 4), (1, 15), (3/2, 8), (2, 16), (5/2, 8), (3, 16),
(7/2, 8), (4, 16), (9/2, 8), (5, 16), (11/2, 8), (6, 16), (13/2,
8), (7, 15), (15/2, 4), (8, 1)

Up1 [8, 2]ψ (0, 4), (1/2, 16), (1, 8), (3/2, 16), (2, 8), (5/2, 16), (3, 8),
(7/2, 16), (4, 8), (9/2, 16), (5, 8), (11/2, 16), (6, 8), (13/2,
16), (7, 4)

Up2 [8, 2]ψ (0, 28), (1/2, 112), (1, 28)

3 The appearance of valp(NF/Q(p)vp(k)) is due to the normalizations of our operators.
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Up [3, 3]χ (0, 1), (1/2, 4), (1, 16), (3/2, 12), (2, 30), (5/2, 12), (3, 16),

(7/2, 4), (4, 1)

Up1 [3, 3]χ (0, 8), (1/2, 32), (1, 16), (3/2, 32), (2, 8)
Up2 [3, 3]χ (0, 8), (1/2, 32), (1, 16), (3/2, 32), (2, 8)

Up [5, 3]χ (0, 1), (1/2, 4), (1, 16), (3/2, 12), (2, 31), (5/2, 16), (3, 32),
(7/2, 16), (4, 31), (9/2, 12), (5, 16), (11/2, 4), (6, 1)

Up1 [5, 3]χ (0, 8), (1/2, 32), (1, 16), (3/2, 32), (2, 16), (5/2, 32), (3, 16),
(7/2, 32), (4, 8)

Up2 [5, 3]χ (0, 16), (1/2, 64), (1, 32), (3/2, 64), (2, 16)

Up [7, 3]χ (0, 1), (1/2, 4), (1, 16), (3/2, 12), (2, 31), (5/2, 16), (3,
32), (7/2, 16), (4, 32), (9/2, 16), (5, 32), (11/2, 16), (6, 31),
(13/2, 12), (7, 16), (15/2, 4), (8, 1)

Up1 [5, 3]χ (0, 8), (1/2, 32), (1, 16), (3/2, 32), (2, 16), (5/2, 32), (3, 16),
(7/2, 32), (4, 16), (9/2, 32), (5, 16), (11/2, 32), (6, 8)

Up2 [5, 3]χ (0, 24), (1/2, 96), (1, 48), (3/2, 96), (2, 24)

Operator Size Overconvergent slopes

Up 10 · 24 (0, 1), (1/2, 4), (1, 16), (3/2, 12), (2, 32), (5/2, 20), (3, 48),

(7/2, 28), (4, 59), (9/2, 16), (5, 4)

Up 20 · 24 (0, 1), (1/2, 4), (1, 16), (3/2, 12), (2, 32), (5/2, 20), (3,
48), (7/2, 28), (4, 64), (9/2, 36), (5, 79), (11/2, 40), (6, 75),
(13/2, 20), (7, 5)

8.1.5 Partial slopes

Since we are working in the split case, we have that Up = Up1Up2 = Up2Up1 so one can

write a Up slope λp as a pair (λp1 , λp2) where λpi is a slope of Upi and λp = λp1 + λp2 .

Classical partial slopes

Throughout this subsection, we denote weights [k1, k2]ψ simply as [k1, k2] with the

understanding that we have a character as in the tables above. For level U0(9) and weights

[2, 2], [2, 4], [2, 6], [2, 8], [4, 4], we plot the pairs (λp1 , λp2) together with the multiplicity

with which they appear.
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In the above figures the horizontal axis denotes the slopes of Up1 and the vertical

axis the slopes of Up2 . The numbers in the grid represent the multiplicity with which this

pair appears. Here one sees that if we fix k1 and let k2 grow, then the slopes of Up1 only

increase in multiplicity, but we do not gain any new slopes. On the other hand, for Up2

we see that as k2 increases the we gain new slopes.44

8.1.6. Since we are in the classical case there is no problem in computing the slopes

of Up1 , Up2 , from which we can construct the above figures as follows: thinking of the

multiplicities as variables (xi,j), the slopes of Uap1
U bp2

for varying a, b give us linear

equations in (xi,j) which one can try to solve. For example, knowing that in weight [2, 2]

the operator Up1 has slopes [(0, 3), (1/2, 6), (1, 3)] tells us that in the above figure adding

the multiplicities along each column should give 3, 6, 3 respectively. Furthermore, the

Atkin-Lehner involutions Wp,Wpi give extra symmetries in the multiplicities, e.g., Wp

sends the pair

(λp1 , λp2) 7−→ (k0 − 1− λp1 − vp1(k), k0 − 1− λp2 − vp2(k))

which combined give us enough equations to uniquely determine the multiplicities (for

the weights in the above figure).

8.1.7. We draw similar figures in level U0(8) which give:

4Similarly, if we fix k2 and increase k1 we see the same behaviour but with Up1 and Up2 switching roles.
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Observation 8.1.8. We note that in both examples above, the pictures appear to built up

from the weight [2, 2] picture, by ‘glueing’ along the edges and adding up the multiplicities

along the edges.

Question 8.1.9. For (arithmetic) weights near the boundary, are the above multiplicities

all ways greater than 0? In other words, given eigenforms fi for Upi with eigenvalues αi,

does there exist an eigenform for Up with eigenvalue α1α2 · · ·αf .

Question 8.1.10. Can we obtain the picture above for any weight near the boundary, by

simply glueing the picture in weight [2, 2]?
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Overconvergent partial slopes

8.1.11. In the overconvergent case one cannot directly compute the slopes of Upi since

these are not compact operators. Instead one can compute the successive slopes of UpUnpi
(which are compact operators) for n ≥ 0. From this one can obtain slopes of Upi as

follows: let N � 0 , Pn(N,κ) = (UpU
n
pi)(N,κ) (with the same notation as in 8.0.28.0.2) and

let S(Pn(N,κ)) denote the set of slopes of Pn(N,κ). Now, for each s ∈ S(P0(N,κ)), let

T (s) =

J(s)⋂
n=1

{(t− s)/n | t ∈ S(Pn(N,κ))}

where J(s)� 0 such that the intersection stabilizes (such a J(s) always exists). Then (for

large enough N ) ⋃
s∈S(PN0 (κ))

T (s) ⊂ S(Upi)

which is what we want.

8.1.12. While Upi are not compact operators on the spaces of overconvergent Hilbert

modular forms, one can restrict them to subspaces on which they act as compact operators.

To see this, let L(n,m) denote the subspace of L〈X,Y 〉 generated by XiY j for i ∈
[0, . . . , n] and j ∈ [0, . . . ,m] where n,m ∈ Z≥0∪{∞} ( note that L(∞,∞) = L〈X,Y 〉).
Then for m ∈ Z≥0, κ = [k1, k2]ψ a weight with k2 = m + 2 and k1 arbitrary (with

appropriate parity conditions), the subspace

h⊕
i=1

L(∞,m) ⊂
h⊕
i=1

L〈X,Y 〉 ∼= S†κ(U)

is for a fixed under the |κ action of Hecke operators and Up1 acts compactly (this can be

seen from Corollary 7.1.117.1.11) on this subspace. Similarly Up2 is compact on
⊕h

i=1 L(n,∞)

for a fixed n ∈ Z≥0 and weights κ = [n+ 2, k2]ψ. From this one can compute subsets of

S(Upi).

Using this we compute some overconvergent slopes of Upi in weight [2, 2] acting

on ⊕iL(0, 8) ⊂ ⊕iL(0,∞) and ⊕iL(8, 0) ⊂ ⊕iL(∞, 0). We only show this for Up1 on

⊕iL(8, 0) since the picture for Up2 on ⊕iL(8, 0) is the same but flipped vertically. Note

that ⊕iL(0, 0) ∼= S2(U).
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The picture for ⊕iL(8, 1) is computed under the assumption that the first 9 multiplicities

on the line y = 0 are as in the picture for ⊕iL(8, 0), which one expects is the case.

Remark 8.1.13. In the computations done in the previous section, it would be interesting

to not only vary the ki independently, but also to choose characters which are more

ramified at p1 or p2 whilst still being in the boundary. This would correspond to moving

in the p1 or p2 ‘direction’ in the weight space. At the moment we are not able to compute

such examples, since in the cases we have studied this would mean increasing the level.

This has the effect (in general) of making the matrices much larger, which in turn makes

computing the characteristic polynomial much more difficult (which is the bottleneck in

our method).

8.2 Inert case

We now move to the inert case. For this we set F = Q(
√

5) and p = 2. We will

compute the slopes of U2 acting on SD,†kψ
(U0(23p11)) where p11 is the prime lying above

11 generated by (11, 3 + 2
√

5) and ψ : O×p → {±1} is the primitive Hecke character of

conductor 23. In particular, it is such that ψ(e) = 1 where e ∈ O×F is the fundamental

unit (embedded in the usual way into O×p ) is the fundamental unit. Similarly, we let

χ be a primitive Dirichlet character of conductor 23 such that χ(e) = −1. Lastly, for

s = [s1, s2] ∈ Z2 let τ s = (τ s11 , τ s22 ) denote the Teichmüller character to the power s.

Note that in this case h = 16 and therefore the space of classical Hilbert modular forms of

weight [k1, k2]φ (for φ either of the characters above) and level U0(23p11) (which can be

checked to be sufficiently small) has dimension (k1−1) · (k2−1)16 for [k1, k2] 6= [2, 2]. In

weight [2, 2]ψ the dimension is 15, but with our convention, we compute a 16-dimensional
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space.

8.2.1. Note that ψ is chosen so that we can work with weights with even parity, and χ

with odd weights. Moreover, note that in this case L = Q2(
√

5) is the degree 2 unramified

extension of Q2. One then checks that the torsion subgroup of the units is cyclic of order

6 given by the 6-th roots of unity. Therefore, an arithmetic weight [k1, k2]ψ induces a

map on the 6-th roots of unity, and this map determines in what component of the weight

space the weight lives. Now looking at the explicit description of the weight, we see that

κψ(ζ6) = ζk1−k2
6 ψ(ζ6).

From which it follows that for a fixed character ψ, the arithmetic weights given by κψ and

κ′ψ will live on the same component of the weight space if and only if k1 − k2 ≡ k′1 − k′2
mod 6. Moreover, we can switch between the different components of the weight space

by using the Teichmüller character τ .

Weight Classical Slopes

[2, 2]ψ (2/3, 6), (1, 4), (4/3, 6)

[2, 2]ψτ2 (1/2, 4), (1, 8), (3/2, 4)

[2, 4]ψ (1/2, 4), (1, 8), (3/2, 4), (5/3, 6), (2, 4), (7/3, 6), (5/2, 4), (3, 8), (7/2, 4)

[2, 6]ψ (1/2, 4), (1, 8), (3/2, 8), (2, 8), (5/2, 4), (8/3, 6), (3, 4), (10/3, 6),

(7/2, 4), (4, 8), (9/2, 8), (5, 8), (11/2, 4)

[2, 8]ψ (2/3, 6), (1, 4), (4/3, 6), (3/2, 4), (2, 8), (5/2, 8), (3, 8), (7/2, 4),

(11/3, 6), (4, 4), (13/3, 6), (9/2, 4), (5, 8), (11/2, 8), (6, 8), (13/2, 4),

(20/3, 6), (7, 4), (22/3, 6)

[2, 10]ψ (1/2, 4), (1, 8), (3/2, 4), (5/3, 6), (2, 4), (7/3, 6), (5/2, 4), (3, 8), (7/2, 8),

(4, 8), (9/2, 4), (14/3, 6), (5, 4), (16/3, 6), (11/2, 4), (6, 8), (13/2, 8),

(7, 8), (15/2, 4), (23/3, 6), (8, 4), (25/3, 6), (17/2, 4), (9, 8), (19/2, 4)

[4, 4]ψ (2/3, 6), (1, 4), (4/3, 6), (3/2, 8), (2, 16), (5/2, 16), (8/3, 6), (3, 20),

(10/3, 6), (7/2, 16), (4, 16), (9/2, 8), (14/3, 6), (5, 4), (16/3, 6)

[4, 6]ψ (1/2, 4), (1, 8), (3/2, 8), (5/3, 6), (2, 12), (7/3, 6), (5/2, 12), (8/3, 6),

(3, 20), (10/3, 6), (7/2, 16), (11/3, 6), (4, 20), (13/3, 6), (9/2, 16),

(14/3, 6), (5, 20), (16/3, 6), (11/2, 12), (17/3, 6), (6, 12), (19/3, 6),

(13/2, 8), (7, 8), (15/2, 4)

[3, 3]χ (2/3, 6), (1, 4), (4/3, 6), (3/2, 8), (2, 16), (5/2, 8), (8/3, 6), (3, 4),

(10/3, 6)

[3, 5]χ (1/2, 4), (1, 8), (3/2, 8), (5/3, 6), (2, 12), (7/3, 6), (5/2, 12), (3, 16),

(7/2, 12), (11/3, 6), (4, 12), (13/3, 6), (9/2, 8), (5, 8), (11/2, 4)
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[3, 7]χ (1/2, 4), (1, 8), (3/2, 8), (5/3, 6), (2, 12), (7/3, 6), (5/2, 8), (8/3, 6),

(3, 12), (10/3, 6), (7/2, 12), (4, 16), (9/2, 12), (14/3, 6), (5, 12),

(16/3, 6), (11/2, 8), (17/3, 6), (6, 12), (19/3, 6), (13/2, 8), (7, 8),

(15/2, 4)

[3, 9]χ (2/3, 6), (1, 4), (4/3, 6), (3/2, 8), (2, 16), (5/2, 12), (8/3, 6), (3, 12),

(10/3, 6), (7/2, 8), (11/3, 6), (4, 12), (13/3, 6), (9/2, 12), (5, 16),

(11/2, 12), (17/3, 6), (6, 12), (19/3, 6), (13/2, 8), (20/3, 6), (7, 12),

(22/3, 6), (15/2, 12), (8, 16), (17/2, 8), (26/3, 6), (9, 4), (28/3, 6)

[3, 11]χ (1/2, 4), (1, 8), (3/2, 8), (5/3, 6), (2, 12), (7/3, 6), (5/2, 12), (3, 16),

(7/2, 12), (11/3, 6), (4, 12), (13/3, 6), (9/2, 8), (14/3, 6), (5, 12),

(16/3, 6), (11/2, 12), (6, 16), (13/2, 12), (20/3, 6), (7, 12), (22/3, 6),

(15/2, 8), (23/3, 6), (8, 12), (25/3, 6), (17/2, 12), (9, 16), (19/2, 12),

(29/3, 6), (10, 12), (31/3, 6), (21/2, 8), (11, 8), (23/2, 4)

8.2.2. We now compute some overconvergent slopes, extending our previous computa-

tions. As in the split case, the computations suggest that as long as the weights are in the

same component of the weight space, they have the same set of slopes. In the table below,

we let component 1 consists of the weights [k1, k2]ψ appearing the table of classical slopes

for which k1 ≡ k2 mod 6, and component 2 consist of the remaining weights.

Component Matrix Overconvergent Slopes

1 Up(20 · 16) (2/3, 6), (1, 4), (4/3, 6), (3/2, 8), (2, 16), (5/2, 16),

(8/3, 6), (3, 20), (10/3, 6), (7/2, 16), (11/3, 12), (4, 24),

(13/3, 12), (9/2, 24), (14/3, 6), (5, 36), (16/3, 6),

(11/2, 28), (17/3, 12), (6, 32), (19/3, 12), (13/2, 12)

1 Up(22 · 16) (2/3, 6), (1, 4), (4/3, 6), (3/2, 8), (2, 16), (5/2, 16),

(8/3, 6), (3, 20), (10/3, 6), (7/2, 16), (11/3, 12), (4, 24),

(13/3, 12), (9/2, 24), (14/3, 6), (5, 36), (16/3, 6),

(11/2, 32), (17/3, 12), (6, 40), (19/3, 12), (13/2, 16),

(20/3, 6), (7, 4), (22/3, 6)

1 Up(25 · 16) (2/3, 6), (1, 4), (4/3, 6), (3/2, 8), (2, 16), (5/2, 16),

(8/3, 6), (3, 20), (10/3, 6), (7/2, 16), (11/3, 12), (4, 24),

(13/3, 12), (9/2, 24), (14/3, 6), (5, 36), (16/3, 6),

(11/2, 32), (17/3, 12), (6, 40), (19/3, 12), (13/2, 24),

(20/3, 12), (7, 24), (22/3, 12), (15/2, 8)
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1 Up(28 · 16) (2/3, 6), (1, 4), (4/3, 6), (3/2, 8), (2, 16), (5/2, 16),

(8/3, 6), (3, 20), (10/3, 6), (7/2, 16), (11/3, 12), (4, 24),

(13/3, 12), (9/2, 24), (14/3, 6), (5, 36), (16/3, 6),

(11/2, 32), (17/3, 12), (6, 40), (19/3, 12), (13/2, 32),

(20/3, 18), (7, 44), (22/3, 18), (15/2, 16)

1 Up(30 · 16) (2/3, 6), (1, 4), (4/3, 6), (3/2, 8), (2, 16), (5/2, 16),

(8/3, 6), (3, 20), (10/3, 6), (7/2, 16), (11/3, 12), (4, 24),

(13/3, 12), (9/2, 24), (14/3, 6), (5, 36), (16/3, 6),

(11/2, 32), (17/3, 12), (6, 40), (19/3, 12), (13/2, 32),

(20/3, 18), (7, 44), (22/3, 18), (15/2, 24), (8, 16),

(17/2, 8)

2 Up(20 · 16) (1/2, 4), (1, 8), (3/2, 8), (5/3, 6), (2, 12), (7/3, 6),

(5/2, 12), (8/3, 6), (3, 20), (10/3, 6), (7/2, 20),

(11/3, 6), (4, 28), (13/3, 6), (9/2, 24), (14/3, 12),

(5, 32), (16/3, 12), (11/2, 24), (17/3, 12), (6, 32),

(19/3, 12), (13/2, 12)

2 Up(22 · 16) (1/2, 4), (1, 8), (3/2, 8), (5/3, 6), (2, 12), (7/3, 6),

(5/2, 12), (8/3, 6), (3, 20), (10/3, 6), (7/2, 20),

(11/3, 6), (4, 28), (13/3, 6), (9/2, 24), (14/3, 12),

(5, 32), (16/3, 12), (11/2, 28), (17/3, 12), (6, 40),

(19/3, 12), (13/2, 20), (7, 8), (15/2, 4)

2 Up(25 · 16) (1/2, 4), (1, 8), (3/2, 8), (5/3, 6), (2, 12), (7/3, 6),

(5/2, 12), (8/3, 6), (3, 20), (10/3, 6), (7/2, 20),

(11/3, 6), (4, 28), (13/3, 6), (9/2, 24), (14/3, 12),

(5, 32), (16/3, 12), (11/2, 28), (17/3, 12), (6, 40),

(19/3, 12), (13/2, 28), (20/3, 6), (7, 28), (22/3, 6),

(15/2, 12)

2 Up(30 · 16) (1/2, 4), (1, 8), (3/2, 8), (5/3, 6), (2, 12), (7/3, 6),

(5/2, 12), (8/3, 6), (3, 20), (10/3, 6), (7/2, 20),

(11/3, 6), (4, 28), (13/3, 6), (9/2, 24), (14/3, 12),

(5, 32), (16/3, 12), (11/2, 28), (17/3, 12), (6, 40),

(19/3, 12), (13/2, 36), (20/3, 12), (7, 48), (22/3, 12),

(15/2, 24), (23/3, 6), (8, 12), (25/3, 6), (17/2, 4)

Observation 8.2.3. (1) As in the split case, we see that the slopes are again unions

of arithmetic progressions, but the difference is that they do not all have common
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difference. In particular, we see arithmetic progressions with common difference 1/2

and 1/3 appearing in the sequence of slopes. This again is something that (as far as

the author knows) has not been seen over Q, and by results in [LWX14LWX14], cannot occur

in many cases. Also we have this phenomenon of increasing multiplicities as in the

split case.

(2) In the above example, the different components of the weight space are identified by

the Galois orbits of the characters. Note that we can move between the components

by twisting by the Teichmüller character τ as we did in the weight [2, 2] case.

(3) Again one can see the Atkin-Lehner involution in action in this setting.

8.3 Conjectural behaviour near the boundary

Over Q, [BP16aBP16a] have given a conjectural recipe to generate all of the overconvergent

slopes and if one looks at this recipe one sees that its only ‘ingredients’ are classical slopes

appearing in weight 2 (with appropriate character) at each component of the weight space

and the number of cusps. The analogous behaviour is present in our computations and in

general, our computations suggest the following conjectural structure for the slopes.

Conjecture 8.3.1. Let U be a sufficiently small level and let κ = [k1, k2]ψ be an arithmetic

weight near the boundary. Let V ∈ {Up, Upi}, then for each r, s ∈ {0, . . . , t − 1} (with t

the order of the torsion of O×L as before) there exists a h× h matrix Bκ(r, s, V ) which only

depends on which component κ lies in (after scaling by valp(w(κ))), such that

S(V ) =
⋃

r,s∈Z≥0

{S(Bκ(r, s, V )) + r + s}

where r, s are residues of r, s mod t. Moreover, on classical subspaces

S(V |Sκ(U)) =
⋃

r∈{0...,k1−2}
s∈{0,...,k2−2}

{S(Bκ(r, s, V )) + r + s}.

Remark 8.3.2. Note that, if we identify the classical space Sκ(U) with the subspace of

L〈X,Y 〉 with basis XrY s for r ∈ {0, . . . , k1 − 2}, s ∈ {0, . . . , k2 − 2} then the above

conjecture says that associated to each basis element XrY s, we have a h × h matrix

Bκ(r, s,X), such that if we want to compute the slopes of Up (or Upi ) we need only

compute the slopes of Bκ(r, s, Up) (or Bκ(r, s, Upi) ) for all r, s appearing in the basis

of Sκ(U). This would then also give a perfect control theorem. Moreover, the matrices
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Bκ(r, s,X) only depend on r, s mod t and on the component of the weight space in

which κ lies.

Remark 8.3.3. The conjecture above also explains the fact that the multiplicities of the

slopes increasing, suggesting that this is due to the fact that for each x ∈ Z≥0 there are

x+ 1 pairs (x1, x2) ∈ Z2
≥0 such that Bi(x1, x2) = x, which in practice means that the

generating blocks ‘bunch up’ giving the increased multiplicities.

8.3.4 Split case

The computations suggest that Conjecture 8.3.18.3.1 holds with the following data.

• For F = Q(
√

13), U = U0(9), κ = [k1, k2]ψi (as before) and any r, s ∈ Z≥0

S(Bκ(r, s, Up)) ={(0, 1), (1/2, 2), (1, 6), (3/2, 2), (2, 1)}

S(Bk(r, s, Upi)) ={(0, 3), (1/2, 6), (1, 3)}

• For F = Q(
√

17), U = U0(8), κ = [k1, k2]ψ or κ = [k1, k2]χ (as before) and any

r, s ∈ Z≥0

S(Bκ(r, s, Up)) ={(0, 1), (1/2, 4), (1, 14), (3/2, 4), (2, 1)}

S(Bk(r, s, Upi)) ={(0, 4), (1/2, 16), (1, 4)}

Here r, s denote the reduction modulo t and our computations suggest that the

matrices Bκ(r, s,X) should be the same as the matrices of Up, Upi acting on classical

weight [2, 2]ψτ r−s where τ is the Teichmüller character, which is analogous to [BP16aBP16a,

Theorem 3.10].

8.3.5 Inert case

Our computations suggest that Conjecture 8.3.18.3.1 holds in the case where F = Q(
√

5) and

U = U0(8p11). In this case we have

• Let κ1 be any arithmetic weight ( near the boundary with finite part ψ or χ) in

component 1 (see 8.2.28.2.2) of the weight space we have

S(Bκ1(r, s, Up)) =

{(2/3, 6), (1, 4), (4/3, 6)}, if r ≡ s mod 6,

{(1/2, 4), (1, 8), (3/2, 4)}, else.
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• Let κ2 an arithmetic weight (near the boundary with finite part ψ or χ) in component

2

S(Bκ2(r, s, Up)) =

{(1/2, 4), (1, 8), (3/2, 4)}, if r ≡ s mod 6,

{(2/3, 6), (1, 4), (4/3, 6)}, else.

8.3.6. Although we cannot at present prove this conjecture, in this case we can try to

understand the slopes of Sκ,r(Up) using Proposition 7.2.287.2.28 (assuming 7.2.137.2.13). In this case

we find that µmax = 16, t = 6 and therefore (using Remark 7.2.217.2.21 ) one needs to check

that for fixed si, wi ∈ {0, . . . , 5}, the slopes of

B̃(p)(s1 + tx1, s2 + tx2, w1 + tn1, w2 + tn2)

are fixed for all xi, ni ∈ {0, . . . , 217}. We have only checked this for x1, x2, k1, k2 with

Bi(x1, x2) ≤ 106 and 0 ≤ ni ≤ 10 (with same parity), since in order completely check

this, it would (roughly) take 1012 years (on our computers). In all of the cases checked,

the slopes agree with those computed in the tables above. This then indicates that the

slopes of S(Up) = S(Up) and satisfy Conjecture 8.3.18.3.1.

Remark 8.3.7. The fact that slopes of Up agree with those of Up appears to be a very

general phenomenon of compact operators acting on spaces of convergent power series,

as suggested by computing examples of compact operators on L〈X,Y 〉 which do not

correspond to Up operators. This behaviour is also present for modular forms over Q, as

can be seen in [BC05BC05, Jac03Jac03].

8.4 The centre of the weight space

To contrast with the computations of slopes near the boundary, we include some compu-

tations of slopes near the centre of the weight space. Here we see much less structure

than near the boundary.

We now collect some computations of (normalized) slopes for F = Q(
√

5), p = 3

and for weights all in the same component of the weight space, which in this case means

k1 ≡ k2 mod 8.

Remark 8.4.1. We hope to eventually use this data to construct totally real ghost series

analogous to the ones in [BP16bBP16b].

Notation 8.4.2. The † denotes overconvergent slopes. So 200† means that these are the

first 200 slopes of Up(200, κ) with the notation as in 8.0.28.0.2. The other dimensions are the

dimension of the corresponding space of classical forms.
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Weight Level Dimension Slopes

[2, 2] U0(p11) 0

[2, 2] U0(3p11) 1 (0, 1), (2, 1)
[2, 2] U0(3p11) 200† (0, 1), (1, 2), (2, 6), (3, 6), (4, 4), (9/2, 4), (5,

8), (11/2, 4), (6, 30), (13/2, 4), (7, 4), (8, 6),
(17/2, 4), (9, 6), (10, 22), (11, 10), (23/2, 4),
(12, 19), (13, 8), (40/3, 3), (27/2, 6), (14, 30),
(29/2, 4), (15, 3), (16, 2)

[4, 4] U0(p11) 1 (0, 1)

[4, 4] U0(3p11) 18 (0, 1), (2, 16), (6, 1)
[4, 4] U0(3p11) 200† (0, 1), (2, 16), (3, 2), (4, 6), (5, 4), (6, 24),

(19/3, 6), (7, 10), (8, 20), (9, 6), (10, 16), (11,
20), (12, 28), (13, 16), (14, 12), (15, 7), (16,
3), (53/3, 3)

[6, 6] U0(p11) 5 (0,1),(1,2),(2,2)
[6, 6] U0(3p11) 50 (0, 1), (1, 2), (2, 2), (4, 40), (8, 2), (9, 2), (10,

1)
[6, 6] U0(3p11) 200† (0, 1), (1, 2), (2, 2), (4, 40), (5, 2), (6, 2),

(13/2, 4), (7, 20), (8, 6), (17/2, 4), (9, 10),
(19/2, 4), (10, 12), (21/2, 4), (11, 30), (23/2,
4), (12, 17), (25/2, 2), (13, 15), (14, 8), (15,
7), (31/2, 2), (16, 2)

[8, 8] U0(p11) 9 (0,1),(1,2),(2,6)
[8, 8] U0(3p11) 98 (0, 1), (1, 2), (2, 6), (6, 80), (12, 6), (13, 2),

(14, 1)
[8, 8] U0(3p11) 200† (0, 1), (1, 2), (2, 6), (6, 80), (7, 2), (8, 2),

(9, 26), (10, 2), (21/2, 4), (11, 8), (23/2, 4),
(12, 19), (37/3, 3), (13, 21), (27/2, 6), (14, 6),
(29/2, 4), (15, 2), (16, 2)

[10, 2] U0(p11) 1 (0, 1)

[10, 2] U0(3p11) 18 (0, 1), (4, 16), (10, 1)
[10, 2] U0(3p11) 200† (0, 1), (1, 1), (2, 4), (3, 5), (4, 16), (5, 11),

(11/2, 4), (6, 5), (13/2, 6), (7, 34), (15/2, 4),
(8, 3), (9, 11), (10, 8), (11, 30), (12, 12), (25/2,
4), (38/3, 3), (13, 11), (14, 15), (15, 9), (16,
3)
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[10, 10] U0(p11) 17 (0,1), (2,14), (3,2)
[10, 10] U0(3p11) 162 (0, 1), (2, 14), (3, 2), (8, 128), (15, 2), (16, 14),

(18, 1)
[10, 10] U0(3p11) 200† (0, 1), (2, 14), (3, 2), (8, 128), (9, 2), (10, 6),

(11, 2), (23/2, 4), (12, 8), (37/3, 6), (13, 5),
(27/2, 4), (14, 5), (29/2, 2), (15, 5), (16, 3),
(17, 2), (18, 1)

[12, 4] U0(p11) 7 (0,1), (1,1), (2,1), (3,4)
[12, 4] U0(3p11) 66 (0, 1), (1, 1), (2, 1), (3, 4), (6, 52), (11, 4), (12,

1), (13, 1), (14, 1)
[12, 4] U0(3p11) 200† (0, 1), (1, 1), (2, 1), (3, 5), (4, 4), (5, 5), (6,

56), (7, 1), (8, 2), (17/2, 12), (9, 18), (19/2,
28), (10, 4), (21/2, 2), (11, 9), (23/2, 4), (12,
8), (25/2, 4), (13, 13), (14, 5), (29/2, 4), (15,
8), (16, 4), (17, 1)

[14, 6] U0(p11) 13 (0,1), (1,2), (2,2), (3,6), (4,2)
[14, 6] U0(3p11) 130 (0, 1), (1, 2), (2, 2), (3, 6), (4, 2), (8, 104), (14,

2), (15, 6), (16, 2), (17, 2), (18, 1)
[14, 6] U0(3p11) 200† (0, 1), (1, 2), (2, 2), (3, 6), (4, 2), (5, 1), (6,

1), (13/2, 2), (7, 3), (15/2, 2), (8, 104), (9, 8),
(10, 3), (21/2, 2), (11, 12), (23/2, 14), (47/4,
4), (12, 4), (25/2, 2), (13, 3), (14, 2), (15, 2),
(16, 3), (33/2, 2), (17, 6), (18, 7)

[14, 14] U0(p11) 33 (0,1), (1,2), (2,6), (3,6), (4,4), (5,6), (6,6),
(7,2)

[14, 14] U0(3p11) 338 (0, 1), (1, 2), (2, 6), (3, 6), (4, 4), (5, 6), (6,
6), (7, 2), (12, 272), (19, 2), (20, 6), (21, 6),
(22, 4), (23, 6), (24, 6), (25, 2), (26, 1)

[14, 14] U0(3p11) 200† (0, 1), (1, 2), (2, 6), (3, 6), (4, 4), (5, 6), (6,
6), (7, 2), (12, 58), (13, 1), (27/2, 8), (14, 11),
(15, 14), (31/2, 8), (47/3, 6), (16, 10), (33/2,
26), (17, 18), (18, 5), (19, 1), (21, 1)

[16, 8] U0(p11) 21 (0,1), (1,1), (2,6), (5/2,8), (3,1), (4,4)
[16, 8] U0(3p11) 210 (0, 1), (1, 1), (2, 6), (5/2, 8), (3, 1), (4, 4), (10,

168), (18, 4), (19, 1), (39/2, 8), (20, 6), (21,
1), (22, 1)
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[16, 8] U0(3p11) 200† (0, 1), (1, 1), (2, 6), (5/2, 8), (3, 1), (4, 4),
(7, 1), (8, 2), (9, 3), (10, 111), (12, 1), (13, 2),
(27/2, 4), (14, 4), (29/2, 24), (15, 2), (31/2,
2), (16, 7), (17, 2), (18, 2), (37/2, 4), (19, 5),
(20, 2), (21, 1)

[18, 2] U0(p11) 3 (0,1), (1,1), (2,1)
[18, 2] U0(3p11) 34 (0, 1), (1, 1), (2, 1), (8, 28), (16, 1), (17, 1),

(18, 1)
[18, 2] U0(3p11) 200† (0, 1), (1, 2), (2, 2), (3, 7), (7/2, 4), (4, 3),

(9/2, 2), (5, 11), (6, 5), (13/2, 2), (7, 3), (8,
23), (9, 7), (19/2, 6), (10, 8), (21/2, 10), (11,
17), (45/4, 4), (23/2, 8), (12, 12), (25/2, 2),
(13, 3), (27/2, 4), (14, 5), (15, 3), (31/2, 2),
(16, 10), (33/2, 2), (84/5, 5), (17, 2), (35/2,
2), (18, 5), (37/2, 8), (19, 5), (39/2, 2), (20,
2), (22, 1)

[20, 4] U0(p11) 11 (0,1), (1,1), (2,5), (3,4)
[20, 4] U0(3p11) 114 (0, 1), (1, 1), (2, 5), (3, 4), (10, 92), (19, 4),

(20, 5), (21, 1), (22, 1)
[20, 4] U0(3p11) 200† (0, 1), (1, 1), (2, 5), (3, 5), (4, 4), (5, 8), (6,

1), (7, 8), (8, 11), (17/2, 8), (9, 7), (10, 42),
(11, 1), (12, 2), (25/2, 2), (13, 5), (40/3, 3),
(14, 7), (29/2, 12), (15, 2), (16, 13), (33/2, 2),
(17, 8), (35/2, 6), (18, 5), (37/2, 2), (19, 2),
(39/2, 6), (41/2, 12), (22, 4), (45/2, 2), (47/2,
2), (24, 1)

[22, 6] U0(p11) 21 (0,1), (1,1), (2,2), (5/2,8), (3,5), (4,3), (5,1)
[22, 6] U0(3p11) 210 (0, 1), (1, 1), (2, 2), (5/2, 8), (3, 5), (4, 3), (5,

1), (12, 168), (21, 1), (22, 3), (23, 5), (47/2,
8), (24, 2), (25, 1), (26, 1)

[22, 6] U0(3p11) 200† (0, 1), (1, 1), (2, 2), (5/2, 8), (3, 5), (4, 3), (5,
2), (6, 4), (7, 8), (8, 1), (9, 8), (10, 11), (11,
11), (12, 38), (14, 7), (15, 6), (16, 12), (33/2,
16), (17, 12), (18, 10), (19, 4), (20, 8), (21, 7),
(22, 3), (23, 3), (24, 5), (25, 1), (26, 3)

[26, 2] U0(p11) 5 (0,1), (1,1), (2,3)

118



[26, 2] U0(3p11) 50 (0, 1), (1, 1), (2, 3), (12, 40), (24, 3), (25, 1),
(26, 1)

[26, 2] U0(3p11) 200† (0, 1), (1, 2), (2, 6), (3, 3), (4, 1), (9/2, 4), (5,
7), (11/2, 6), (6, 28), (13/2, 4), (7, 3), (15/2,
2), (8, 4), (17/2, 2), (9, 11), (10, 3), (11, 6),
(12, 8), (13, 3), (27/2, 2), (14, 4), (15, 5), (16,
2), (33/2, 4), (17, 3), (18, 2), (19, 13), (20, 1),
(41/2, 2), (21, 9), (22, 2), (67/3, 3), (45/2, 2),
(23, 5), (47/2, 2), (24, 5), (25, 5), (51/2, 8),
(26, 5), (53/2, 6), (27, 3), (28, 1), (29, 1), (30,
1)

Observation 8.4.3. The first observation is that in this case, the slopes are not appearing

as unions of arithmetic progressions. Moreover, there are many non-integer slopes, which

is in contrast to many examples over Q.

Remark 8.4.4. In level U0(3p11) the dimension of the classical spaces of weight [k1, k2]

is 2 · (k1 − 1) · (k2 − 1) since the level is sufficiently small. For level (U0(p11)) we have

the following table of dimensions, where all the weights are in the same component of the

weight space.
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Weight Dim Weight Dim Weight Dim Weight Dim Weight Dim

[2, 2] 0 [10, 2] 1 [12, 4] 7 [14, 6] 13 [16, 8] 21

[4, 4] 1 [18, 2] 3 [20, 4] 11 [22, 6] 21 [24, 8] 33

[6, 6] 5 [26, 2] 5 [28, 4] 17 [30, 6] 29 [32, 8] 43

[8, 8] 9 [34, 2] 7 [36, 4] 21 [38, 6] 37 [40, 8] 55

[10, 10] 17 [42, 2] 9 [44, 4] 25 [46, 6] 45 [48, 8] 65

[12, 12] 25 [50, 2] 9 [52, 4] 31 [54, 6] 53 [56, 8] 77

[14, 14] 33 [58, 2] 11 [60, 4] 35 [62, 6] 61 [64, 8] 89

[16, 16] 45 [66, 2] 13 [68, 4] 41 [70, 6] 69 [72, 8] 99

[18, 18] 57 [74, 2] 15 [76, 4] 45 [78, 6] 77 [80, 8] 111

[20, 20] 73 [82, 2] 17 [84, 4] 49 [86, 6] 85 [88, 8] 121

[22, 22] 89 [90, 2] 17 [92, 4] 55 [94, 6] 93 [96, 8] 133

[24, 24] 105 [98, 2] 19 [100, 4] 59 [102, 6] 101 [104, 8] 145

[26, 26] 125 [106, 2] 21 [108, 4] 65 [110, 6] 109 [112, 8] 155

[28, 28] 145 [114, 2] 23 [116, 4] 69 [118, 6] 117 [120, 8] 167

[30, 30] 169 [122, 2] 25 [124, 4] 73 [126, 6] 125 [128, 8] -

[32, 32] 193 [130, 2] 25 [132, 4] 79 [134, 6] 133 [136, 8] -

[34, 34] 217 [138, 2] 27 [140, 4] 83 [142, 6] 141 [144, 8] -

[36, 36] 245 [146, 2] 29 [148, 4] 89 [150, 6] 149 [152, 8] -

The "-" in the above table indicate that the computation of the dimension had not

terminated at the time of writing.

In the table below we work in Q(
√

5), with p = 2 and level U0(2p11), where

p11|11.

Level Weight Dimension Slopes

U0(p11) [2, 2] 0

U0(2p11) [2, 2] 1 (2, 1)

U0(2p11) [2, 2] 200† (2, 5), (3, 2), (4, 10), (6, 3), (7, 4), (8, 33), (10, 4),

(11, 2), (12, 3), (25/2, 4), (13, 12), (14, 10),

(44/3, 6), (15, 8), (46/3, 6), (31/2, 8), (16, 40),

(49/3, 3), (33/2, 4), (50/3, 3), (17, 14), (35/2, 2),

(18, 7), (19, 3), (20, 2), (41/2, 2)

U0(p11) [4, 4] 1 (2, 1)

U0(2p11) [4, 4] 9 (2, 8), (4, 1)
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U0(2p11) [4, 4] 200† (2, 8), (4, 1), (5, 4), (16/3, 6), (6, 6), (7, 2),

(8, 7), (17/2, 12), (9, 4), (10, 21), (11, 2), (12, 6),

(25/2, 4), (13, 6), (27/2, 4), (14, 3), (15, 22),

(16, 8), (33/2, 4), (17, 13), (35/2, 24), (18, 21),

(19, 6), (39/2, 2), (20, 3), (21, 1)

U0(p11) [6, 6] 5 (2, 5)

U0(2p11) [6, 6] 25 (2, 5), (4, 15), (8, 5)

U0(2p11) [6, 6] 200† (2, 5), (4, 15), (6, 4), (7, 2), (15/2, 4), (8, 7),

(9, 4), (10, 12), (21/2, 20), (11, 2), (12, 14),

(13, 4), (14, 7), (44/3, 6), (15, 10), (46/3, 6),

(16, 12), (33/2, 4), (17, 24), (18, 8), (37/2, 2),

(19, 9), (39/2, 8), (20, 6), (41/2, 2), (21, 2),

(22, 1)

U0(p11) [8, 8] 9 (2, 8), (4, 1)

U0(2p11) [8, 8] 49 (2, 8), (4, 1), (6, 31), (10, 1), (12, 8)

U0(2p11) [8, 8] 200† (2, 8), (4, 1), (6, 31), (8, 4), (9, 2), (19/2, 4),

(10, 3), (11, 8), (35/3, 6), (12, 18), (37/3, 6),

(25/2, 4), (13, 4), (14, 6), (15, 18), (16, 7),

(17, 6), (35/2, 12), (18, 17), (55/3, 6), (37/2, 12),

(19, 9), (20, 5), (21, 3)

U0(p11) [4, 2] 1 (1, 1)

U0(2p11) [4, 2] 3 (1, 2), (3, 1)

U0(2p11) [4, 2] 200† (1, 2), (2, 1), (5/2, 2), (3, 1), (4, 5), (14/3, 3),

(5, 5), (6, 1), (13/2, 2), (7, 5), (8, 11), (9, 24),

(19/2, 2), (10, 1), (11, 9), (12, 4), (13, 2),

(14, 19), (29/2, 2), (15, 7), (46/3, 3), (16, 12),

(49/3, 6), (33/2, 16), (50/3, 3), (67/4, 4),

(17, 21), (35/2, 6), (18, 9), (37/2, 4), (19, 5),

(20, 1), (21, 2)

U0(p11) [6, 2] 1 (1, 1)

U0(2p11) [6, 2] 5 (1, 1), (2, 3), (5, 1)
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U0(2p11) [6, 2] 200† (1, 1), (2, 3), (3, 2), (10/3, 3), (4, 1), (9/2, 4),

(5, 4), (17/3, 3), (6, 2), (7, 4), (15/2, 4), (8, 2),

(17/2, 2), (9, 17), (19/2, 2), (10, 12), (21/2, 2),

(11, 6), (12, 12), (13, 5), (14, 2), (15, 26),

(31/2, 2), (16, 7), (33/2, 2), (17, 18), (35/2, 16),

(53/3, 6), (18, 17), (19, 7), (39/2, 2), (20, 4)

U0(p11) [6, 4] 3 (1, 2), (3, 1)

U0(2p11) [6, 4] 15 (1, 2), (2, 1), (3, 9), (6, 1), (7, 2)

U0(2p11) [6, 4] 200† (1, 2), (2, 1), (3, 9), (4, 1), (5, 3), (6, 4), (19/3, 3),

(13/2, 2), (7, 3), (8, 8), (9, 5), (19/2, 16), (10, 8),

(11, 12), (12, 3), (13, 10), (27/2, 2), (41/3, 3),

(14, 7), (43/3, 3), (29/2, 2), (15, 5), (16, 28),

(17, 8), (52/3, 3), (35/2, 4), (18, 12), (37/2, 18),

(19, 7), (20, 8)

U0(p11) [8, 4] 5 (1, 1), (3/2, 2), (3, 2)

U0(2p11) [8, 4] 21 (1, 1), (3/2, 2), (3, 2), (4, 11), (7, 2), (17/2, 2), (9, 1)

U0(2p11) [8, 4] 200† (1, 1), (3/2, 2), (3, 2), (4, 13), (5, 1), (6, 9),

(7, 3), (8, 2), (17/2, 4), (9, 5), (19/2, 2), (10, 11),

(31/3, 3), (21/2, 4), (32/3, 9), (11, 7), (35/3, 3),

(12, 5), (13, 4), (40/3, 3), (27/2, 2), (14, 4),

(43/3, 3), (29/2, 4), (15, 9), (47/3, 3), (16, 11),

(33/2, 8), (17, 23), (52/3, 3), (18, 9), (37/2, 2),

(19, 7), (39/2, 4), (20, 10), (21, 2), (22, 3)

U0(p11) [8, 6] 7 (1, 2), (2, 1), (5/2, 2), (3, 1), (4, 1)

U0(2p11) [8, 6] 35 (1, 2), (2, 1), (5/2, 2), (3, 1), (4, 1), (5, 21), (8, 1),

(9, 1), (19/2, 2), (10, 1), (11, 2)

U0(2p11) [8, 6] 200† (1, 2), (2, 1), (5/2, 2), (3, 1), (4, 1), (5, 21),

(7, 8), (8, 1), (9, 7), (19/2, 2), (10, 4), (31/3, 3),

(11, 15), (34/3, 9), (23/2, 6), (35/3, 3), (12, 3),

(25/2, 2), (13, 7), (14, 4), (29/2, 6), (15, 3),

(46/3, 3), (16, 12), (33/2, 4), (50/3, 3), (17, 17),

(52/3, 3), (35/2, 12), (18, 13), (37/2, 2), (19, 6),

(20, 5), (21, 5), (43/2, 2), (22, 1), (23, 1)

Remark 8.4.5. We can again see that in this case there is much less structure to the

slopes. In particular, they do not appear to be unions of arithmetic progressions and

their structure is not obviously different from the regular case. Moreover, if one make the
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naive extension of the definitions of Γ0-regular and Γ0-irregular as in [Buz05Buz05], then in the

above examples p = 3 would be regular and p = 2 would be regular, but there does not

appear to be any difference in the structure of the slopes in these cases.

8.5 Concluding remarks

The computations done in this chapter clearly indicate that near the boundary of the

weight space, the slopes of Up have a very precise structure analogous to what one sees

over Q. The task is to now prove that the slopes are as in Conjecture 8.3.18.3.1. Over Q
the analogous result can be shown to hold in many cases by the work of Liu-Wan-Xiao

[LWX14LWX14]. Their work is based on constructing certain integral models for the spaces of

overconvergent quaternionic modular forms (over Q) and then obtaining bounds on the

Newton polygon of Up, which (due to what appears to be a numerical coincidence) is

sharp at infinitely many points; this then allows them to deduce very strong results about

the geometry of the associated eigenvariety. One of the main obstructions to extending

their results to the Hilbert modular form case, is that they rely on combining a stronger

version of the control theorem which describes the critical slopes together with the action

of the Atkin-Lehner involution. In the Hilbert case we do not at present have a control

theorem as strong as this. But the computations suggest that the structure of the slopes

of Up is not uncommon. In particular, for γ ∈
(
p 0
0 1

)
U0(pn) say, the matrix of |γ acting

on ⊕iL〈X,Y 〉 also appear to have this structure. Therefore one should expect a more

general proof to work, which explains the numerical coincidences in [LWX14LWX14].

More generally, one would like to understand not only the geometry of these

eigenvarieties near the boundary, but also in the centre of the weight space. Over Q,

Bergdall-Pollack [BP16bBP16b] have constructed ghost series, which predict the slopes of Up near

the boundary and in the centre. Specifically, in the centre, their ghost series agrees with

conjectural algorithms by Buzzard which generate the slopes in the Γ0-regular case. The

striking thing about the construction of the ghost series is that it only relies on dimensions

of spaces of classical forms and on dimensions of subspaces of newforms, yet it appears to

perfectly predict the slopes in many cases, over large regions of the weight space. In the

Hilbert case, one can hope to do something similar by using the data computed above.
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