## ALGEBRAIC NUMBER THEORY- SHEET 2

## CHRISTOPHER BIRKBECK

For this problem sheet you have a choice:

- Option 1: Hand in solutions to 2.5 and 2.14
- Option 2: Hand in a solution to 2.13

Solutions should be uploaded to moodle by: 11:59pm on 31/01/2021 [The \*'s denote hard questions.]

**Exercise 2.1.** Let F be a field. Check that the only units in F[x] are given by polynomials of degree 0, i.e., they are elements of F.

**Exercise 2.2.** True or False: If p(x) is reducible in F[x] then there exists  $\alpha \in F$ such that  $f(\alpha) = 0$  (i.e it has a root in F).

**Exercise 2.3.** Show that  $x^3 + 8x^2 + 3x + 1$  is irreducible in  $\mathbb{Q}[x]$ .

**Exercise 2.4.** Prove that  $f(x) \in \mathbb{Z}[x]$  is irreducible if and only if f(x+a) is irreducible for any  $a \in \mathbb{Z}$ .

**Exercise 2.5.** Prove that  $p(x) = x^2 + x + 1$  is irreducible in  $\mathbb{F}_2[x]$ .

**Exercise 2.6.** Calculate the minimal polynomials over  $\mathbb Q$  of the following numbers and show that the polynomials are irreducible.

- (1)  $2\sqrt[3]{6} + 3$
- (2)  $\sqrt{3} + \sqrt{5}$ (3)  $e^{2\pi i/12}$ .
- (4)  $\sqrt{7+\sqrt{3}}$

**Exercise 2.7.** Let L/F be a field extension and let  $\alpha$  be algebraic over F, then prove that  $m_{\alpha,L}(x)$  divides  $m_{\alpha,F}(x)$  in L[x].

**Exercise 2.8.** Prove that if  $\alpha \in K$  is algebraic over F, then it is also algebraic over any field extension of F.

**Exercise\* 2.9.** Show that  $x^4 + 1$  is irreducible in  $\mathbb{Q}[x]$  but factorizes modulo every prime number p.

**Exercise 2.10.** Let  $\pi = 3.14...$  and e = 2.71... be the usual transcendental numbers. Show that one of  $\pi + e$  and  $\pi e$  must also be transcendental.

**Exercise 2.11.** Calculate the following degrees:

- (1)  $[\mathbb{Q}(\sqrt{5},\sqrt{7})/\mathbb{Q}]$
- (2)  $[\mathbb{Q}(\sqrt{5}, \sqrt{11})/\mathbb{Q}(\sqrt{5} + \sqrt{11})]$
- (3)  $[\mathbb{Q}(\sqrt[4]{7})/\mathbb{Q}(\sqrt{7})]$

**Exercise 2.12.** Let p, q be odd prime numbers, with  $p \neq q$ . Show that

$$\mathbb{Q}(\sqrt{p}+\sqrt{q})=\mathbb{Q}(\sqrt{p},\sqrt{q}).$$

**Exercise\* 2.13.** Let  $f(x) = x^n + a_{n-1}x^{n-1} + \cdots \pm p$  with  $a_i \in \mathbb{Z}$  and p a prime number. Prove that if

$$p > 1 + |a_1| + \dots + |a_{n-1}|$$

then f is irreducible in  $\mathbb{Z}[x]$ .

**Exercise 2.14.** Let  $\alpha$  be an algebraic number such that  $m_{\alpha}$  has degree n. Let  $f,g\in\mathbb{Z}[x]$  be of degree strictly less than n such that  $f(\alpha)=g(\alpha)$ . Show that f=g.