
Formalising modular forms, Eisenstein series and1

the statement of the modularity conjecture2

Christopher Birkbeck ! Ï3

University of East Anglia, Norwich, UK4

Abstract5

Modular forms are special analytic functions of number theoretic interest due to their close links6

with elliptic curves, Galois representations and L-functions. These functions play a key role in7

number theory, being the subject of the modularity conjecture and key in the proof of Fermat’s Last8

Theorem. We describe the formalisation of modular forms and Eisenstein series. Furthermore, we9

formalise the proof that Eisenstein series are indeed modular forms, describing the main results that10

are required. Finally we give a formalised statement of the modularity conjecture, linking elliptic11

curves and modular forms.12

2012 ACM Subject Classification Mathematics of computing → Mathematical software; Security13

and privacy → Logic and verification14

Keywords and phrases Modular forms, Eisenstein series, modularity, number theory, formal maths,15

Lean, mathlib16

Digital Object Identifier 10.4230/LIPIcs...17

Supplementary Material The code described is available in a separate reposition to mathlib18

Software: https://github.com/CBirkbeck/ModularForms19

Acknowledgements This wouldn’t have been possible without lots of help from people on Lean’s20

Zulip chat, such as Alex Best, Ricardo Brasca, Kevin Buzzard, Yury Kudryashov, Alex Kontorovich,21

Heather Macbeth, Marc Masdeu and many others.22

1 Introduction23

Historically, one of the main objects of study for mathematicians have been Diophantine24

equations. Such problems, while easy to state, can require a great deal of mathematical25

machinery to solve. Perhaps the most famous example of this is that of Fermat’s Last26

Theorem, which says that for n ∈ Z>2, the equation xn + yn = zn has no integer solutions27

with xyz ̸= 0. This simple to state problem took mathematicians over 300 years to solve,28

and its proof was completed by Andrew Wiles. The methods developed in the proof are still29

widely used and studied in current research in number theory and geometry.30

A crucial step in Wiles’ proof is that of creating a link between algebra, geometry and31

analysis. Specifically, one needs to use a special case of the modularity conjecture (also32

known as the Shimura–Taniyama–Weil conjecture)1. This theorem creates a bridge between33

special kinds of analytic functions, known as modular forms, and geometric objects, known as34

elliptic curves. On the geometric side, elliptic curves (over Q), are described by equations of35

the form y2 = x3 +ax+b (for a, b rational numbers). On the analytic side, modular forms are36

complex holomorphic functions transforming nicely under symmetries of the complex upper37

half plane. These functions have Fourier expansions whose coefficients encode interesting38

arithmetic information.39

1 Due to work of Breuil, Conrad, Diamond, Taylor, Wiles and many others, this conjectures is now a
theorem, see [4, 2].

© Christopher Birkbeck;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:c.birkbeck@uea.ac.uk
https://cdbirkbeck.wixsite.com/website
https://orcid.org/0000-0002-7546-9028
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Formalising Modular forms

The modularity conjecture links, in a precise way, the number of solutions an elliptic40

curve has over a finite field to Fourier coefficients of certain modular forms, and it is this41

link which is the key step in the proof of Fermat’s Last Theorem. We do will not attempt to42

summarise the proof here but more details can be found in many places, such as [5].43

Modular forms (and their generalisations) also have many other interesting connections,44

such as computing Ramanujan’s tau function, Jacobi’s four-square theorem, and links with45

the Leech lattice. Our goal here is to formalise basic aspects of the theory of modular forms,46

Eisenstein series and formalise the statement of the modularity conjecture. We do this47

in the Lean theorem prover [6]. This is a dependently typed proof assistant based on the48

calculus of inductive constructions. We build upon the Lean 3 mathematics library, known49

as mathlib [10]. This library of formalised definitions/theorems contains many of the basic50

ingredients required to formalise this conjecture.51

One of the goals of mathlib is to create a unified library of computer verified mathematics,52

with the aim of changing how mathematics is communicated, taught and researched. Recently53

there have been many examples of high level mathematics being successfully formalised in54

Lean, for example work by Buzzard–Commelin–Massot formalising the definition of perfectoid55

spaces [3] or more recently the "Liquid Tensor Experiment" [1] that has formalised recent56

work of Clausen–Scholze.57

In order to begin formalising current number theory research, one needs to first formalise58

the key definitions and basic properties. Modular forms are interesting definitions to formalise59

for several reasons:60

1. Fermat’s Last Theorem is one of the biggest results in number theory and mathematics61

in general and therefore an obvious target for formalisation. The complete proof will62

require the theory of modular forms and a proof of (a special case of) the modularity63

conjecture. The work here therefore is a small stepping stone this direction and opens64

the possibility for more of the theory to be formalised.65

2. These definitions have algebraic and analytic components and therefore serve as a good66

test of how different parts of mathlib interact and highlights what areas need to be67

developed. For example, in the process of formalising our constructions, we also had to68

formalise GLn, results about differentiable functions between manifolds (such as their sum69

and product are again differentiable), proving uniform limits of differentiable functions70

are again differentiable, etc. These definitions/results were first developed here and most71

of them are in the process of being added the mathlib.72

3. In order to develop a good API for modular forms several formalisation challenges need73

to be overcome. For example, developing a theory that we can efficiently build upon74

the future by using classes such as fun_like and modular_form_class which allows for75

better integration with the existing library and as well allowing future definitions (such76

as newforms) to automatically inherit previous results. Similarly there the Type-theoretic77

issues that arise when defining the graded commutative ring of modular forms that needed78

to be addressed.79

We should also note that some basic definitions of modular forms had already been80

formalised in Lean, here: https://github.com/semorrison/kbb. This project by Reid81

Barton, Johan Commelin, Mario Carneiro, Johannes Hölzl, Kenny Lau, Sean Leather,82

Patrick Massot and Scott Morrison contained (amongst other mathematical definitions) a83

basic definition of modular forms, but no examples and they did not state the modularity84

conjecture. In particular, our work in defining modular forms for general congruence85

subgroups, Eisenstein series and proving that they are modular forms is new as well as86

https://github.com/semorrison/kbb

C. Birkbeck XX:3

our statement of the modularity conjecture. Nonetheless, while our definitions are mainly87

independent of the ones found here, this work was extremely useful in guiding us.88

Lastly, there is forthcoming work of Manuel Eberl, Larry Paulson and Anthony Bordg89

in Isabelle/HOL, containing the definition of modular forms, Eisenstein series and more,90

although at the time of writing the code is not yet public. But as far as we know, definitions91

for general congruence subgroups and the statement of the modularity conjecture have yet92

to be formalised in other proof assistants such as Isabelle/HOL, Coq, etc.93

Some of the resulting code from this project has already been integrated into mathlib94

(such as the definitions of modular form and cusp forms) and the rest is currently in the95

process of being added. We also have a repository containing the source code (that is not96

yet in mathlib) for this project here : https://github.com/CBirkbeck/ModularForms. In97

what follows we will omit the code which formalises the required proofs, but all details can98

be found in mathlib or the repository above. Other than the modularity conjecture, the rest99

of the results discussed here have complete "sorry-free" proofs.100

2 Modular forms101

We begin by introducing the main mathematical definitions we will be formalising together102

with some of the key results needed to prove some of their basic properties. We assume some103

familiarity with basic matrix theory, ring theory and complex analysis. The definitions and104

theorems below are all standard and can be found in many sources, such as [7, 9].105

Let H denote the complex upper half plane, defined as {z ∈ C | 0 < Im(z)}. On this
set we can define an action by the group of 2 × 2 matrices with real entries and positive
determinant, denoted GL2(R)+. Specifically, given γ =

(
a b
c d

)
in GL2(R)+ and z ∈ H we

define γ · z =
(

az+b
cz+d

)
. One easily checks that this is indeed a group action. Specifically, if

γ1, γ2 ∈ GL2(R)+ then we have (γ1γ2) · z = γ1 · (γ2 · z) and the identity element of GL2(R)+

acts trivially. Using this one can define an action on functions H → C as follows: let k ∈ Z
be an integer and γ =

(
a b
c d

)
∈ GL2(R)+. Then the weight k action of γ on f is given by

(f |k γ)(z) := det(γ)k−1(cz + d)−kf(γ · z).

Again one easily checks that this defines an action on this space of functions, known as the106

weight k slash action.107

Modular forms are holomorphic functions H → C that are invariant under this |k γ action,108

for γ in certain subgroups of GL2(R)+. These are subgroups of SL2(Z) (the 2 × 2 matrices109

with integer entries and determinant 1) called the level of the modular form. The most110

common of these are known as congruence subgroups and some basic examples are given by111

taking N ∈ Z>0 and defining:112

Γ0(N) := {γ ∈ SL2(Z) | γ ≡ (∗ ∗
0 ∗) (mod N)}113

Γ1(N) := {γ ∈ SL2(Z) | γ ≡ (∗ ∗
0 1) (mod N)}114

Γ(N) := {γ ∈ SL2(Z) | γ ≡ (1 0
0 1) (mod N)} .115

116
117

▶ Definition 1. Let Γ denote a subgroup of SL2(Z), then a modular form of level Γ and118

weight k ∈ Z is a function f : H → C such that:119

1. For all γ ∈ Γ we have f |k γ = f (w call such functions slash invariant).120

2. f is holomorphic on H.121

https://github.com/CBirkbeck/ModularForms

XX:4 Formalising Modular forms

3. For all γ ∈ SL2(Z), there exist A, B ∈ R such that for all z ∈ H, with A ≤ Im(z), we122

have |(f |k γ)(z)| ≤ B. Here | − | denotes the standard complex absolute value.123

This defines a complex vector space which we denote by Mk(Γ). By replacing condition (3)124

in Definition 1 with (4) below defines the subspace of cusp forms, which we denote by Sk(Γ).125

4. For all γ ∈ SL2(Z), and all 0 < ϵ, there exists A ∈ R such that for all z ∈ H, with126

A ≤ Im(z), we have |(f |k γ)(z)| ≤ ϵ.127

Note that Γ0(N) and Γ1(N) both contain the matrix γ = (1 1
0 1) . Therefore, if f is128

modular form of level Γ0(N) or Γ1(N) then f(z + 1) = (f |k γ)(z) = f(z). It follows129

that f is Z-periodic. Now a basic result in complex analysis tells us that any Z-periodic130

holomorphic function has a Fourier expansion of the form f(z) =
∑∞

n=0 an(f)qn where131

q = e2πiz. Moreover, the Fourier coefficients of f can be expressed as (see, for example [7,132

Exercise 5.11.1]):133

an(f) =
∫ 1

0
f(x + iy)e−2πin(x+iy)dx (1)134

These will be key later in stating our version of the modularity conjecture.135

Spaces of modular forms come with operators which act on them, induced by the action136

of GL2(Q)+, known as Hecke operators. These are closely linked to Fourier coefficients of137

modular forms and give us insights in to the structure of spaces of modular forms. We hope138

to use the results here to later begin formalising these theories.139

We note that the definitions given are not the most general definitions possible. One can140

define modular forms for more general connected reductive groups (for example), but this141

would require a great deal more work and would delay the development of what are arguably142

the most common examples of modular forms. So this is an example where working in the143

highest level of generality is not feasible, which is in contrast to many of the other parts of144

mathlib.145

2.1 Modular forms in Lean146

We chose to work with Lean due to its extensive library (mathlib [10]) of formalised math-147

ematical results. This library contains many of the basic notions required to formalise the148

definition of modular forms. For example, work of Alex Kontorovich, Heather Macbeth and149

Marc Masdeu formalised the definitions of the upper half plane and defined the above action150

for the group SL2(R).151

Since we would like to eventually incorporate Hecke operators, we first need to extend this152

action on the upper half plane to a larger group. We begin by defining the group GLn(R)+
153

(of invertible matrices with positive determinant) for any commutative ring R equipped with154

a linear ordering.155

156

def GL_pos {n : Type*} {R : Type*} [decidable_eq n] [fintype n]157

[linear_ordered_comm_ring R] :158

subgroup (GL n R) :=(units.pos_subgroup R).comap general_linear_group.det159
160

Explicitly, this says that given a finite type n and R a linear ordered commutative161

ring, then we define a subgroup of GLn(R). Now, comap is such that given a group162

homomorphism G1 → G2, and a subgroup H2 of G2 we can construct a subgroup of163

G1 by taking its pre-image. So in order to construct a subgroup of GLn(R) we need a164

C. Birkbeck XX:5

group homomorphism GLn(R) → G2 and a subgroup of G2. The group homomorphism is165

given by general_linear_group.det which denotes the map GLn(R) → R× given by the166

determinant map, and units.pos_subgroup R is the subgroup of R× of positive elements.167

So, in words, we take the pre-image of the subgroup of positive elements in R under the168

determinant map.169

Next we define the slash action by creating a new class which we call slash_action,170

bundling the main properties of this action.171

172

class slash_action (β G α γ : Type*) [group G] [ring α] [has_smul γ α] :=173

(map : β → G → α → α)174

(mul_zero : ∀ (k : β) (g : G), map k g 0 = 0)175

(one_mul : ∀ (k : β) (a : α), map k 1 a = a)176

(right_action : ∀ (k : β) (g h : G) (a : α),177

map k h (map k g a) = map k (g * h) a)178

(smul_action : ∀(k : β) (g : G) (a : α)(z : γ),179

map k g (z · a) = z · (map k g a))180

(add_action : ∀ (k : β) (g : G) (a b : α),181

map k g (a + b) = map k g a + map k g b)182
183

Here mul_zero and one_mul encode the fact that we want 0 to trivially and 1 to act as184

the identity. Similarly, right_action, smul_action and add_action encode (respectively)185

that we want this to be right action, we want the action to be equivariant under scaling2
186

and that the action is additive. The advantage of defining this as a new class is that each187

time we prove an instance of a slash action, we can easily call these basic properties.188

We also define the action induced by a monoid homomorphism from H to G. Specifically,189

we define:190

191

def monoid_hom_slash_action {β G H α γ : Type*} [group G] [ring α]192

[has_smul γ α] [group H] [slash_action β G α γ] (h : H →* G) :193

slash_action β H α γ :=194

-- H →* G denotes a monoid homomorphism from H to G.195

-- Arguments in curly brackets are implicit, meaning that, in practice,196

Lean will be able to infer them given the other arguments.197
198

Using this, the slash action given by GL2(R)+, induces actions by SL2(Z) and subgroups199

Γ of SL2(Z) by simply constructing the relevant monoid homomorphisms. It therefore suffices200

to define the |k γ action (for γ ∈ GL2(R)+) on functions H → C. We do this by first defining201

the map and then checking it satisfies the listed properties.202

203

def slash (k : Z) (γ : GL(2, R)+) (f : H → C) (x : H) : C :=204

f (γ · x) * (((↑m γ).det) : R)^(k-1) * (upper_half_plane.denom γ x)^(-k)205
206

This definition takes as input and integer k, a matrix A in GL2(R)+ and a function f : H → C207

and returning a function H → C. The definition of the map exploits many of existing matrix208

functionality in mathlib. Specifically, here ↑m is the coercion GL2(R)+ → Mat2,2(R) which209

has a pre-existing definition of determinant, so (↑m γ).det is the determinant of γ. Moreover210

upper_half_plane.denom is the function which given
(

a b
c d

)
and z ∈ H returns cz + d. This211

2 Here we have incorporated a scalar action (has_smul) of γ on α, which in practice will come from the
C-vector space structure on the space of functions H → C.

XX:6 Formalising Modular forms

function was already present in mathlib as it is used in constructing the fundamental domain212

for the action of SL2(Z) on H.213

We subsequently formalise the proof that this does indeed define a slash action on the214

space of functions H → C resulting in an instance of the slash_action class defined above:215

216

instance : slash_action Z GL(2, R)+ (H → C) C :=217
218

We denote this slash action by f | [k, γ]. Similarly, by constructing the monoid homomorphism219

Γ → GL2(R)+ we get an induced action by subgroups:220

221

instance subgroup_action (Γ : subgroup SL(2,Z)) :222

slash_action Z Γ (H → C) C :=223
224

The reason for having several instances of this action is that for the definitions of the225

spaces of modular forms we only want functions which are invariant under the slash action226

by a subgroup of SL2(Z). By having separate actions we can then avoid having to explicitly227

coerce our elements into GL2(R)+.228

2.2 Slash invariant forms229

Before defining modular forms and cusp forms, we first define functions that are invariant230

under the slash action, which we call slash invariant forms. For this, probably the simplest231

would be to define them as the subspace of functions from H → C such that for all γ ∈ Γ232

we have f |k γ = f . If we then imposed that they are holomorphic and bounded/zero at233

infinity we could easily define spaces of modular forms/cusp forms. This would make modular234

forms terms of some type and moreover any results for that hold for slash invariant forms235

would then have to be manually proved again for modular/cusp forms. For these reasons we236

instead extend the fun_like class to make new classes. This will not only make definitions237

of modular/cusp forms their own type, but will also allow for lemmas about slash invariant238

forms automatically extend to modular/cusp forms. Our first definition is therefore:239

240

structure slash_invariant_form :=241

(to_fun : H → C)242

(slash_action_eq’ : ∀ γ : Γ, to_fun |[k, γ] = to_fun)243

244

class slash_invariant_form_class extends fun_like F H (λ _, C) :=245

(slash_action_eq : ∀ (f : F) (γ : Γ), (f : H → C) |[k, γ] = f)246

--Here we have (F : Type*) and Γ a subgroup of SL(2, Z) and k an integer.247

248

instance slash_invariant_form_class.slash_invariant_form :249

slash_invariant_form_class (slash_invariant_form Γ k) Γ k :=250
251

With this definition "slash invariant form Γ k" will be the type consisting of functions H →252

C together with the property that they are invariant under the slash action.3 We furthermore253

define a class slash_invariant_form_class which extends the fun_like class by adding the254

condition that functions be slash invariant. Lastly we prove that slash_invariant_form is an255

instance of this class. By doing this, any result proven for slash_invariant_form_class will256

automatically hold for slash_invariant_form and, as we will see later, also for modular/cusp257

forms.258

3 If furthermore one requires them to be meromorphic, then such functions are called weakly modular.

C. Birkbeck XX:7

We then give instances on slash_invariant_form which define addition, subtraction,259

the zero element, etc, finalising in the construction of the complex vector space of such260

functions:261

262

instance : add_comm_group (slash_invariant_form Γ k) :=263

fun_like.coe_injective.add_comm_group _ rfl coe_add coe_neg coe_sub264

coe_smul coe_smul265

266

instance : module C (slash_invariant_form Γ k) :=267

coe_hom_injective.module C coe_hom (λ _ _, rfl)268

--coe_hom denotes the hom (slash_invariant_form Γ k) →+ (H → C)269
270

We note that in the first instance we are making use of the fun_like instance to give the271

additive commutative group structure4, which is then needed for the second instance.272

2.3 Modular forms and cusp forms273

Moving forward to the definition of modular/cusp forms, the next hurdle is to formalise274

the notion of holomorphic function. Fortunately for us, there are several different options275

available to us in mathlib. For functions between manifolds, mathlib contains the definition276

of mdifferentiable, which describes when a map f : M → M ′ between manifolds M, M ′ is277

differentiable. Alternatively, mathlib has differentiable_on which describes differentiabil-278

ity of a functions on open subsets of normed vector spaces. Note that in our case, since H is279

not a normed vector space, we would need to first extend our functions (non-canonically)280

from H to, say, C. For this reason we use mdifferentiable instead, which only requires us281

to turn H into a (complex) manifold. We do this by using the fact that we already know282

that the coercion H → C is an open embedding and that this will in turn induce the complex283

manifold structure on H. For brevity we will skip the details here.284

Lastly, we need to formalise Definition 1 (3) and (4). We begin by defining the notion of285

a function being bounded and zero on a filter.5286

287

def zero_at_filter [has_zero β] [topological_space β] (l : filter α)288

(f : α → β) : Prop := filter.tendsto f l (N 0)289

290

def bounded_at_filter [has_norm β] [has_one (α → β)] (l : filter α)291

(f : α → β) : Prop := asymptotics.is_O l f (1 : α → β)292
293

Here the first definition says that the pre-image of f along the filter l approaches 0 (using294

the filter of neighbourhoods of 0 denoted N (0)). Similarly, the second definition says that a295

function is bounded on a filter if it is eventually dominated by the constant function (denoted296

1 : α → β).297

In order to use this for our definition we then need to define a filter representing the limit298

of a function on the upper half plane tending to infinity in the imaginary direction.299

300

def at_im_infty := filter.at_top.comap upper_half_plane.im301
302

4 Here fun_like.coe_injective.add_comm_group says we can define a additive commutative group
structure on a type (with 0, +) if it admits an injection into a add_comm_group preserving 0, +.

5 We are grateful to David Loeffler for suggesting this filter approach to these definitions.

XX:8 Formalising Modular forms

Here filter.at_top is the filter representing the limit to "infinity" on an ordered set.303

Therefore, filter.at_top.comap upper_half_plane.im is the filter representing the limit304

at infinity along imaginary direction in H. Using this we define:305

306

def is_zero_at_im_infty {α : Type*} [has_zero α] [topological_space α]307

(f : H → α) : Prop := zero_at_filter at_im_infty f308

309

def is_bounded_at_im_infty {α : Type*} [has_norm α] [has_one (H → α)]310

(f : H → α) : Prop := bounded_at_filter at_im_infty f311
312

Lastly, we check that these definitions agree with the more classical formulation as in313

Definition 1 (3) and (4) :314

315

lemma zero_at_im_infty (f : H → C) : is_zero_at_im_infty f ↔316

∀ ε : R, 0 < ε → ∃ A : R, ∀ z : H, A ≤ im z → abs (f z) ≤ ε :=317

318

lemma bounded_mem (f : H → C) : is_bounded_at_im_infty f ↔319

∃ (M A : R), ∀ z : H, A ≤ im z → abs (f z) ≤ M :=320
321

We are now in ready to define modular forms and cusp forms as structures extending322

slash_invariant_form323

324

structure modular_form extends slash_invariant_form Γ k :=325

(holo’ : mdifferentiable J (C) J (C) (to_fun : H → C))326

(bdd_at_infty’ : ∀ (A : SL(2, Z)), is_bounded_at_im_infty (to_fun |[k, A]))327

328

class modular_form_class extends slash_invariant_form_class F Γ k :=329

(holo: ∀ f : F, mdifferentiable J (C) J (C) (f : H → C))330

(bdd_at_infty : ∀ (f : F) (A : SL(2, Z)),331

is_bounded_at_im_infty (f |[k, A]))332

333

structure cusp_form extends slash_invariant_form Γ k :=334

(holo’ : mdifferentiable J (C) J (C) (to_fun : H → C))335

(zero_at_infty’ : ∀ (A : SL(2, Z)), is_zero_at_im_infty (to_fun |[k, A]))336

337

class cusp_form_class extends slash_invariant_form_class F Γ k :=338

(holo: ∀ f : F, mdifferentiable J (C) J (C) (f : H → C))339

(zero_at_infty : ∀ (f : F) (A : SL(2, Z)), is_zero_at_im_infty (f |[k, A]))340

--Note that throughout J (C) denotes model_with_corners C C,341

-- (F : Type*) and Γ k are the level and weight respectively.342
343

As above we then give a list of instances on these spaces finalising in:344

345

instance : module C (modular_form Γ k) :=346

instance : module C (cusp_form Γ k) :=347

instance [cusp_form_class F Γ k] : modular_form_class F Γ k :=348
349

Here the last instance says that a cusp_form_class is also a modular_form_class (which350

is just a restatement of the fact that cusp forms are modular forms). As an example of how351

working with these classes can be beneficial, consider the following lemma:352

353

lemma slash_action_eqn’ (k : Z) (Γ : subgroup SL(2, Z))354

C. Birkbeck XX:9

[slash_invariant_form_class F Γ k] (f : F)(γ : Γ) (z : H) :355

f (γ · z) = ((↑mγ 1 0 : C) * z +(↑mγ 1 1 : C))^k * f z :=356
357

this lemma6 is stated for slash_invariant_forms it will automatically hold for any instance358

of a modular_form_class or cusp_form_class.359

Lastly we prove a graded commutative ring instance on the space of modular forms of360

level Γ and any weight. For this we first define the product of two modular forms361

362

def mul {k_1 k_2 : Z} {Γ : subgroup SL(2, Z)} (f : (modular_form Γ k_1))363

(g : (modular_form Γ k_2)) : (modular_form Γ (k_1 + k_2)) :=364
365

Now, proving the graded commutative ring instance is delicate due to definitional equality366

issues. For example, we need to prove that for f ∈ Mk(Γ) and 1 ∈ M0(Γ) (the modular form367

of level Γ and weight 0) we have 1 · f = f . But with our definitions, we have 1 · f is an368

element of M0+k(Γ) and this is not definitionally equal to Mk(Γ). To get around these issues369

we define the map Ma(Γ) → MbΓ under the hypothesis that a = b370

371

def mcast {a b : Z} {Γ : subgroup SL(2, Z)} (h : a = b)372

(f : modular_form Γ a) : (modular_form Γ b) :=373
374

This will then give us a map M0+k(Γ) → Mk(Γ) or from Ma+b(Γ) → Mb+a(Γ), etc. Using375

this with heterogeneous equalities "==" (which allow for writing equalities between terms of376

different types) we can prove, for example,377

378

lemma heq_one_mul (k : Z) {Γ : subgroup SL(2, Z)} (f : modular_form Γ k):379

(1 : modular_form Γ 0).mul f == f := --This says 1 * f = f380
381

From which one can then show that, in the graded ring of modular forms, 1 · f = f , since382

this requires one to fist prove that the elements of both sides first have the same weight and383

then that 1 · f == f . Combining this with similar lemmas we obtain:384

385

instance graded_mod_ring (Γ : subgroup SL(2, Z)) :386

direct_sum.gcomm_ring (λ k, modular_form Γ k) :=387

{ mul := λ k_1, λ k_2, λ f g, f.mul g, ...}388
389

2.4 Congruence subgroups390

We briefly summarise our formalisation of the standard levels of modular forms. As shown391

above these are Γ0(N), Γ1(N) and Γ(N) for N ∈ Z>0. In general, a subgroup Γ of SL2(Z) is392

known as a congruence subgroup if it contains some Γ(N) (with N > 0).393

Our strategy is to first formalise Γ(N) and using this we then define congruence subgroups.394

Since mathlib contains the result that the kernel of a group homomorphism is a subgroup,395

we define Γ(N) as the kernel of the map SL2(Z) → SL2(Z/NZ) given by reducing the entries396

modulo N .397

398

def Gamma (N : N) : subgroup SL(2, Z) := (SLMOD(N)).ker399
400

which is saying we define Γ(N) as the kernel of the group homomorphism (SLMOD(N)), which401

is the entry-wise reduction modulo N map. From this we define congruence subgroups as:402

6 Which simply states the slash invariant forms (for a subgroup of SL2) f satisfy the usual expression
f
(

az+b
cz+d

)
= (cz + d)kf(z).

XX:10 Formalising Modular forms

403

def is_congruence_subgroup (Γ : subgroup SL(2, Z)) : Prop :=404

∃ (N : N+), Gamma_N N ≤ Γ -- N+ denotes the positive integers405
406

We also prove some basic properties of congruence subgroups, such as a subgroup containing407

a congruence subgroup is itself a congruence subgroup and a conjugate of a congruence408

subgroup is again a congruence subgroup. For brevity we omit these details.409

We define Γ0(N) as the subgroup of SL2(Z) consisting of elements whose lower left-hand410

entry is zero modulo N .411

412

def Gamma0_N (N : N) : subgroup SL(2, Z) :={413

carrier := { g : SL(2, Z) | (g 1 0 : zmod N) = 0}, ...}414

-- g 1 0 denotes the lower left-hand entry of g.415
416

Next we define the group homomorphism from Γ0(N) → Z/NZ given by
(

a b
c d

)
→ d (mod N).417

Using this we define Γ1(N)′ as the kernel of this group homomorphism and then Γ1(N)418

is defined as the image of this subgroup under the composition of Γ0(N) → SL2(Z) and419

Γ1(N)′ → Γ0(N).420

421

def Gamma_0_map (N : N): (Gamma0_N N) →* (zmod N) :=422

{ to_fun := λ g, (g 1 1 : zmod N), ...}423

424

def Gamma1_N’ (N : N) :subgroup (Gamma0_N N) := (Gamma_0_map N).ker425

426

def Gamma1_map (N : N) : (Gamma1_N’ N) →* SL(2, Z) :=427

((Gamma0_N N).subtype).comp (Gamma1_N’ N).subtype428

429

def Gamma1_N (N : N) : subgroup SL(2, Z) :=430

subgroup.map (Gamma1_map N) ⊤431

--Here ⊤ denotes SL(2, Z) considered as a subgroup of itself.432
433

3 Eisenstein series434

Perhaps the most basic examples of non-trivial modular forms (for weights k > 2 and even)435

are Eisenstein series. At their most basic, these are function H → C defined by436

Gk(z) =
∑

(c,d) ̸=(0,0)

1
(cz + d)k

, for c, d ∈ Z.437

The definitions and results described below are all standard and can be found in many438

sources, see for example [7]. We formalise this is two steps. We first define:439

440

def Eise (k: Z) (z : H) : Z × Z → C :=441

λ x, 1/(x.1 * z + x.2)^k442
443

where for x ∈ Z × Z, x.i denotes the i-th component of the element. Note that we have not444

restricted to (c, d) ̸= 0 since, by convention, in mathlib we have 0−1 = 0 (with appropriate445

modifications elsewhere to ensure this does not lead to contradictions). Using this we set:446

447

def Eisenstein_series_of_weight_ (k: Z) : H → C :=448

λ z, Σ’ (x : Z × Z), (Eise k z x)449
450

C. Birkbeck XX:11

Here
∑

’ denotes tsum which defines infinite sums in topological monoids in mathlib. This is451

defined such that if the sum converges absolutely then it produces the correct value, otherwise452

it returns zero.453

Note that we cannot use this definition to define G2(z), which, whilst not a modular454

form, is still a function of number theoretic interest. One of the reasons this function is not455

a modular form is that it is not slash invariant, which is due to it only being conditionally456

convergent. Therefore, setting k = 2 in our definition gives the zero function as tsum returns457

zero in this case. On the other hand, with this definition, we can prove that our functions458

are slash invariant without any conditions on the weight.459

In order to verify that they are slash invariant, we begin by defining an equivalence460

Z×Z → Z×Z induced by the action of SL2(Z), where
(

a b
c d

)
sends (x, y) to (xa+yc, xb+yd).461

We call this Ind_equiv A. Using this we have:462

463

lemma Eise_moeb (k : Z) (z : H) (A : SL(2,Z)) (i : Z × Z) :464

Eise k ((A : GL(2, R)+)) · z) i =465

((A.1 1 0 * z + A.1 1 1)^k) * (Eise k z (Ind_equiv A i)) :=466
467

which describes how Eise transforms under Moebius transformations. We can then show468

that Eisenstein series define a slash_invariant_form469

470

def Eisenstein_is_slash_inv (Γ : subgroup SL2Z) (k: Z) :471

(slash_invariant_form Γ k) :=472
473

The main lemmas on which we rely are equiv.tsum_eq which says that the value of tsum is474

unchanged after permuting the index set by an equivalence (in this case Ind_equiv) and475

tsum_mul_left which say that for a fixed a, multiplication by a on the left, commutes with476

tsum. These two results together with Eise_moeb then completes the proof.477

We next verify that for k ≥ 3, Gk is uniformly and absolutely convergent. This result478

will be required to check Gk is holomorphic. We begin by summarising the strategy of proof.479

For this it is convenient to rewrite Gk as480

Gk(z) =
∞∑

n=0
Gk,n(z), Gk,n(z) :=

∑
(c,d)∈S(n)

1
(cz + d)k

481

where S(n) = {(c, d) ∈ Z × Z | max(|c|, |d|) = n}. Noting that for n ≥ 1, S(n) has 8n482

elements, one has that each Gk,n is a finite sum, each of which can be bounded to give a483

bound on Gk in terms of the Riemann zeta function ζ(k) =
∑∞

n=1 n−k. Specifically, we have484

Gk,n,abs(z) ≤ 8n1−kr(z)−k, where485

Gk,n,abs(z) :=
∑

(c,d)∈S(n)

1
|(cz + d)k|

and r(x + iy) := min
(

y,

(
y4 + (xy)2

(x2 + y2)2

)1/2)
.486

Using the triangle inequality it follows that |Gk(z)| ≤
∑

n Gk,n,abs(z) ≤ 8ζ(k − 1)r(z)−k.487

Moreover, if we let Ha,b := {z = x + iy ∈ H | |x| ≤ a, |y| ≥ b} for a, b ∈ R, with 0 < b,488

then for any z ∈ Ha,b we have r(z)−k ≤ r(a + ib)−k. We call Ha,b an upper half space489

slice. Combining this with the bound above, we see that Gk is uniformly bounded on Ha,b.490

This means we can use the Weierstrass M-test7 to show that on each Ha,b, the functions491

7 Originally we had also formalised the proof of the M-test, but a more general version has been added to
mathlib by Heather Macbeth.

XX:12 Formalising Modular forms

∑N
n=0 Gk,n converge absolutely and uniformly to Gk. From this it will follow that Gk is492

holomorphic on each Ha,b and therefore holomorphic on H.493

We have formalised all of the above steps. For brevity we will not show each required494

lemma, but only the final statements whose proofs have been formalised.495

First we note that in mathlib the property of a tsum being absolutely convergent is called496

summable. Similarly, tendsto_uniformly formalises the notion of a sequence of functions497

fn converging uniformly to a limit function f .498

499

lemma Eisenstein_series_is_summable (k : Z)500

(z : H) (h : 3 ≤ k) : summable (Eise k z) :=501

502

lemma Eisen_partial_tendsto_uniformly (k : Z) (h : 3 ≤ k)503

(A B : R) (ha : 0 ≤ A) (hb : 0 < B) :504

tendsto_uniformly (Eisen_par_sum_slice k A B)505

(Eisenstein_series_restrict k A B hb) filter.at_top :=506
507

Here Eisen_par_sum_slice denotes the function sending N ∈ N to the function given by508

mapping z ∈ Ha,b to
∑N

n=0 Gk,n(z) and Eisenstein_series_restrict is the restriction of509

Gk to Ha,b.510

To define Eisen_par_sum_slice, we first define Gk,m:511

512

def eisen_square (k : Z) (n : N) : H → C :=513

λ z, Σ x in Square n, Eise k z x --Square n denotes the S(n) from above514
515

We can relate this to our definition of Eisenstein series with the following lemma which516

says that the sum over all n of Gk,n equals Gk (for k ≥ 3).517

518

lemma Eisenstein_series_is_sum_eisen_squares (k: N) (z: H) (h : 3 ≤ k) :519

(Eisenstein_series_of_weight_ k z) = Σ’ (n : N), eisen_square k n z :=520
521

The proof of uniform convergence then proceeds by restricting each side of this equality522

to Ha,b and proving uniform convergence there. The restriction of the right hand side to523

Ha,b is Eisen_par_sum_slice.524

As mentioned above, main obstruction to checking Gk is a modular form in Lean is525

the holomorphicity condition. Whilst it is simple to check that for fixed (c, d) ̸= (0, 0) the526

function 1
(cz+d)k is holomorphic on H, checking that the infinite sum defines a holomorphic527

function requires a non-trivial complex analysis theorem ([8, Theorem 1.1]):528

▶ Theorem 2. Let {fn} be a sequence of holomorphic functions on an open subset S. If for529

each compact subset C of S, the sequence converges uniformly to a limit function f , then f530

is holomorphic.531

One way of proving this is to use Cauchy’s integral formula, which tells us that, since532

each fn is holomorphic, for each x ∈ S, we can write533

fn(w) =
∫

Cr(x)

fn(ζ)
ζ − w

dζ = 1
2πi

∫ 2π

0

reiθifn(x + reiθ)
(x + reiθ − w) dθ534

for Cr(x) a sufficiently small disk around x (in S), of radius r containing w. Since fn converges535

uniformly to f , it follows that f(x) =
∫

Cr(x)
f(ζ)
ζ−x dζ and therefore f is also differentiable (by536

differentiating under the integral).537

Note is that since holomorphicity is a local property, it suffices to restrict to S being an538

appropriately chosen disk. We start by showing we can interchange the limit with the integral.539

C. Birkbeck XX:13

For this we define circle_transform, which denotes the function θ 7→ 1
2πi

reiθif(x+reiθ)
(x+reiθ−w) . This540

is formalised as:541
542

variables {E : Type} [normed_add_comm_group E] [normed_space C E] (R : R)543

(z w : C)544

545

def circle_transform (f : C → E) (θ : R) : E :=546

(2 * ↑π * I)−1 · deriv (circle_map z R) θ · ((circle_map z R θ) - w)−1 ·547

f(circle_map z R θ) -- I denotes
√

−1.548
549

Here circle_map is the function defining the circle around c and radius R, i.e, c + Reiθ.550

Using this we have:551
552

lemma circle_int_uniform_lim_eq_lim_of_int553

{R : R} {F : N → C → C} (hR : 0 < R)554

(f : C → C) (z : C) (w : ball z R)555

(F_cts : ∀ n, continuous_on (F n) (sphere z R))556

(hlim : tendsto_uniformly_on F f filter.at_top (sphere z R)) :557

tendsto (λ n,
∫

(θ : R) in 0..2 * π, (circle_transform R z w (F n)) θ)558

at_top (N (
∫

(θ : R) in 0..2 * π, (circle_transform R z w f) θ)) :=559
560

In words this says that if Fn is a sequence of continuous functions converging uniformly on a561

sphere to a function f , then the sequence integrals of the functions circle_transform F_n,562

converge to the integral of the function circle_transform f. Note that if each Fn is in fact563

holomorphic, then by Cauchy’s integral formula we have Fn is the same as the integral of564

circle_transform F_n (over a suitably chosen disk).565

The proof of this result relies on a formalised version of Lebesgue dominated convergence566

theorem, known in mathlib as tendsto_integral_of_dominated_convergence.567

Next we want to show that the function C → C given by w 7→
∫

CR(x)
f(ζ)
ζ−w dζ is differenti-568

able. First define569
570

def circle_integral_form [complete_space E]571

(R : R) (z : C) (f : C → E) : (C → E) :=572

λ w, (2 * π * I : C)−1 · (
∮

z in C(z, R), (z - w)−1 · f z)573
574

which we check agrees with the integral of the circle_transform function:575
576

lemma circle_intgral_form_eq_int [complete_space E] (R : R) (z : C)577

(f : C → E) : circle_integral_form R z f =578

λ w,
∫

(θ : R) in 0..2 * π, (circle_transform R z w f) θ :=579
580

We then have:581
582

lemma circle_integral_form_differentiable_on583

{R : R} {f : C → C} (hR : 0 < R) (z : C)584

(hf : continuous_on f (sphere z R)) :585

differentiable_on C (circle_integral_form R z f) (ball z R) :=586
587

This says that if we take a function f which is continuous on the sphere around a point588

z of radius R, then function circle_integral_form f is differentiable on the open disk589

around z of radius R. We note that the proof builds upon existing mathlib results, such as590

has_deriv_at_integral_of_dominated_loc_of_deriv_le which gives (in greater general-591

ity) the derivative under an integral of such functions. These results then combine to give592

the desired result:593

XX:14 Formalising Modular forms

594

lemma uniform_of_diff_circle_int_is_diff {R : R} (F : N → C → C)595

(f : C → C) (z : C) (hR : 0 < R)596

(hdiff : ∀ (n : N), differentiable_on C (F n) (closed_ball z R))597

(hlim : tendsto_uniformly_on F f filter.at_top (closed_ball z R)) :598

differentiable_on C f (ball z R) :=599
600

This result is enough to prove that a uniform limit of mdifferentiable functions fn : H → C601

is again mdifferentiable.8602

Combining the above results and using Cauchy’s Integral Formula, we get:603
604

lemma Eisenstein_series_is_mdiff (k : Z) (hk : 3 ≤ k) :605

mdifferentiable J (C, C) J (C, C) ↑h(Eisenstein_is_slash_inv ⊤ ↑k) :=606

--Here ↑h is the coercion to a function between complex manifolds.607
608

The final step is to check that Eisenstein series are bounded at infinity. This actually609

requires us to use the fact that they are slash invariant. Specifically, using the fact that for610

any slash invariant function f of level SL2(Z) is periodic with period 1, i.e., f(z + 1) = f(z).611

It follows that for any z = x + iy ∈ H we can find z′ ∈ H2,y such that Gk(z) = Gk(z′). So612

it is enough to check its restriction to a chosen upper_half_space_slice is bounded at613

infinity. By using the bounds from the proof uniform convergence, we get:614
615

lemma Eisenstein_series_is_bounded (k : Z) (hk : 3 ≤ k) (A: SL(2, Z)) :616

is_bounded_at_im_infty ((↑h(Eisenstein_is_slash_inv ⊤ k))|[k ,A])617
618

Combining all of these results we finally a sorry-free proof that Eisenstein series are619

modular forms.620
621

def Eisenstein_series_is_modular_form (k : Z) (hk : 3 ≤ k) :622

modular_form ⊤ k :=623

{ to_fun := ↑h(Eisenstein_is_slash_inv ⊤ k),624

slash_action_eq’ := by {convert (Eisenstein_is_slash_inv ⊤ k).2},625

holo’ := Eisenstein_series_is_mdiff k hk,626

bdd_at_infty’ := λ A, Eisenstein_series_is_bounded k hk A}627
628

4 The Modularity Conjecture629

Finally lets turn to the statement of the modularity conjecture. We begin by recalling the630

definition of an elliptic curve, which is a pair (E, O) consisting of a smooth projective curve631

E of genus one and O a point on E. Now, every elliptic curve can be embedded as a smooth632

cubic curve in P2 given by an equation of the form E : y2 +a1xy +a3y = x3 +a2x2 +a4x+a6633

and this is the basis for the current definition of an elliptic curve in mathlib, where roughly634

it is described by the above equation, with the extra condition that the discriminant of this635

cubic is invertible over the base ring.636

▶ Definition 3. Let E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 be the Weierstrass equation637

of an elliptic curve and for p a prime number, let np(E) denote the number of solutions to638

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 in Fp. Then we define ap(E) := p − np(E).639

8 Recently, a more general version of this result has been added to mathlib by Vincent Beffarra which
does not use the circle integral machinery. But this machinery is still being added to mathlib as it is
convenient for Cauchy’s formulas for higher derivatives.

C. Birkbeck XX:15

640

def elliptic_curve.ap (E : elliptic_curve Q) (p : N) : N :=641

p-(cardinal.mk (set_of_points_mod_n E p)).to_nat642
643

Here cardinal.mk takes a set and returns its cardinality and .to_nat turns this into a644

natural number (which is non-zero if the set is non-empty and finite). We also have:645

646

def rat_red (q : Q) (p : N) : (zmod p) :=647

(q.num : zmod p) * (q.denom : zmod p)−1
648
649

This function allows us to reduce the rational coefficients of our elliptic curve modulo p.650

Noting that if any denominator is divisible by p, this will return zero. Lastly we have:651

652

def set_of_points_mod_n (E : elliptic_curve Q) (n : N) :=653

{P : (zmod n) × (zmod n) | let ⟨x, y⟩ := P in y^2 +654

(rat_red E.a1 n)* x * y+ (rat_red E.a3 n) * y =655

x^3 +(rat_red E.a2 n)* x^2 + (rat_red E.a4 n) * x + (rat_red E.a6 n)}656
657

We note that the definition of elliptic_curve.ap makes use of Lean’s namespace function-658

ality. By naming it as elliptic_curve.ap, we can then ask for this value, for any elliptic659

curve E by simply writing E.ap and providing the p we desire. Note that E.ap i is different660

from E.ai.661

Turning now to modular forms, note that while we have not defined q-expansions of662

modular forms in Lean, we can still define the Fourier coefficients an(f) of a modular form663

f , by using the expression given by equation (1) (and setting y = 1) above.664

665

def modular_form_an (n : N) {N : N} {k : Z} (f : cusp_form (Gamma0 N) k)666

: C :=
∫

(x : R) in 0..1,667

(exp (-2 * π * I * n *(x + I))) * f.1 (map_to_upper x)668

--Here map_to_upper send x to x + I in H669
670

Next we formalise the definition of an eigenform. Typically eigenforms are defined as671

functions that are eigenvectors for all Hecke operators, but since we have not yet defined672

Hecke operators, we give an alternative equivalent definition (see [7, Proposition 5.8.5])673

together with the formalised version :674

▶ Definition 4. Let f ∈ Mk(Γ0(N)). Then f is a normalised eigenform if:675

1. a1(f) = 1.676

2. For p a prime and r ≥ 2, apr (f) = ap(f)apr−1(f) − pk−1apr−2(f).677

3. For n, m coprime, amn(f) = am(f)an(f).678

679

def is_normalised_eigenform {N : N} {k : Z}680

(f : cusp_form (Gamma0 N) k) : Prop :=681

(a_[1] f) = 1 ∧682

∀ (m n : N) (hmn : m.coprime n), ((a_[n * m] f) = (a_[n] f) * (a_[m] f)) ∧683

∀ (p r : N) (hp : p.prime) (hr : 2 ≤ r),684

(a_[p^r] f) = (a_[p] f) * (a_[p^(r-1)] f) - (p^(k-1)) * (a_[p^(r-2)] f)685
686

Here cusp_form (Gamma0 N) k denotes Sk(Γ0) and a_[n] f denotes an(f). Note, for687

simplicity, only define the notion for cusp forms since it is all that we will require for the688

modularity conjecture. Finally, lets look at one equivalent statement of the modularity689

conjecture (see [7, Theorem 8.8.1]):690

XX:16 Formalising Modular forms

▶ Theorem 5 (Shimura–Taniyama–Weil conjecture: ap version). Let E be an elliptic curve691

over Q. Then there exists N ∈ N and a normalised cuspidal eigenform f ∈ S2(Γ0(N)) such692

that for all primes p with p ∤ N , we have ap(E) = ap(f) where f =
∑

n an(f)qn is the693

q-expansion of f .694

695

theorem modularity_conjecture (E : elliptic_curve Q) : ∃ (N : N)696

(f : cusp_form (Gamma0 N) 2)697

(hf : is_normalised_eigenform f),698

∀ (p : N) (hp : p.prime) (hN : (N : zmod p) ̸= 0), a_[p] f = E.ap p :=699
700

▶ Remark 6. We note that since we have not defined the conductor of an elliptic curve, our701

notion of ap(E) differs from that in [7, Theorem 8.8.1] for primes p of bad reduction. For702

this reason we state the modularity conjecture with the assumption that p ∤ N , in order to703

give an equivalent statement.704

5 Future work and conclusion705

We have shown how one can formalise the classical definitions of modular forms and Eisenstein706

series, as well as showing the main challenges to proving basic results about these objects,707

such as the holomorphicity of Eisenstein series. All of the results described above have708

complete, "sorry-free" proofs (other than the modularity conjecture). The code shown here is709

currently in the process of being added to mathlib a process which will no doubt improve710

the code and ensure its future utility.711

Formalising the proof of the modularity conjecture and Fermat’s Last Theorem will712

require a great deal more work, but the results here are a small step in this direction. The713

formalisation of these concepts has opened the door to formalising many other results in this714

area, which we now describe:715

Eisenstein series: The reader will notice that in the above we have not yet formalised716

a complete proof that Eisenstein series are non-trivial. At the time of writing we do have717

q-expansions of Eisenstein series and a proof that they are non-trivial, but they currently718

depend some basic analytic identities, specifically the Mittag–Leffler expansion for the719

cotangent function, which we are currently formalising.720

Modular forms : We would like to in the future give examples of cusp forms in Lean.721

This will also require understanding the q-expansions of modular forms more generally.722

Many other basic properties still remain to be formalised, such as the proof that the723

spaces of modular forms are finite dimensional. While mathematically some of the proofs724

are not that advanced, such as the proof for level SL2(Z), the general case relies on725

complex analytic methods, such as the valence formula.726

Hecke operators : Spaces of modular forms are acted upon by linear transformations,727

known as Hecke operators. We have formalised the definitions of modular forms with728

Hecke operators in mind. In the future we hope to define Hecke operator and formalise729

results relating to their action on spaces of modular forms. The aim being to begin730

formalising what is known as Atkin–Lehner theory, which allows a much deeper study731

of modular forms. Another result we hope to formalise in the future is the multiplicity732

one theorem for modular forms, which would be an excellent test case for the formalised733

theory.734

C. Birkbeck XX:17

References735

1 R. Brasca, K. Buzzard, J. Commelin, H. Macbeth, P. Massot, B. Mehta, S. Morrison, F. Nuccio,736

P. Scholze, D. Testa, A. Topaz, et al. Liquid tensor experiment. https://github.com/737

leanprover-community/lean-liquid.738

2 C. Breuil, B. Conrad, and R. Diamond, F. andx Taylor. On the modularity of elliptic739

curves over Q: wild 3-adic exercises. J. Amer. Math. Soc., 14(4):843–939, 2001. doi:740

10.1090/S0894-0347-01-00370-8.741

3 K. Buzzard, J. Commelin, and P. Massot. Formalising perfectoid spaces. Proceedings of the742

9th ACM SIGPLAN International Conference on Certified Programs and Proofs, Jan 2020.743

URL: http://dx.doi.org/10.1145/3372885.3373830, doi:10.1145/3372885.3373830.744

4 B. Conrad, F. Diamond, and R. Taylor. Modularity of certain potentially Barsotti-745

Tate Galois representations. J. Amer. Math. Soc., 12(2):521–567, 1999. doi:10.1090/746

S0894-0347-99-00287-8.747

5 G. Cornell, J.H. Silverman, and G. Stevens. Modular Forms and Fermat’s Last Theorem.748

Springer New York, 2013.749

6 L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The Lean theorem prover750

(system description). In A. P. Felty and A. Middeldorp, editors, Automated Deduction - CADE-751

25, volume 9195 of LNCS, pages 378–388. Springer, 2015. doi:10.1007/978-3-319-21401-6_752

26.753

7 F. Diamond and J. Shurman. A first course in modular forms, volume 228 of Graduate Texts754

in Mathematics. Springer-Verlag, New York, 2005.755

8 S. Lang. Complex analysis, volume 103 of Graduate Texts in Mathematics. Springer-Verlag,756

New York, fourth edition, 1999. doi:10.1007/978-1-4757-3083-8.757

9 T. Miyake. Modular forms. Springer Monographs in Mathematics. Springer-Verlag, Berlin,758

english edition, 2006. Translated from the 1976 Japanese original by Yoshitaka Maeda.759

10 The mathlib Community. The Lean mathematical library. In J. Blanchette and C. Hrit,cu,760

editors, CPP 2020, page 367–381. ACM, 2020. doi:10.1145/3372885.3373824.761

https://github.com/leanprover-community/lean-liquid
https://github.com/leanprover-community/lean-liquid
https://github.com/leanprover-community/lean-liquid
https://doi.org/10.1090/S0894-0347-01-00370-8
https://doi.org/10.1090/S0894-0347-01-00370-8
https://doi.org/10.1090/S0894-0347-01-00370-8
http://dx.doi.org/10.1145/3372885.3373830
https://doi.org/10.1145/3372885.3373830
https://doi.org/10.1090/S0894-0347-99-00287-8
https://doi.org/10.1090/S0894-0347-99-00287-8
https://doi.org/10.1090/S0894-0347-99-00287-8
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-1-4757-3083-8
https://doi.org/10.1145/3372885.3373824

	1 Introduction
	2 Modular forms
	2.1 Modular forms in Lean
	2.2 Slash invariant forms
	2.3 Modular forms and cusp forms
	2.4 Congruence subgroups

	3 Eisenstein series
	4 The Modularity Conjecture
	5 Future work and conclusion

